Abstract
To develop an eco-friendly titanium (Ti) production process, the calciothermic reduction of titanium dioxide (TiO2) was investigated. The mechanism involved in the reduction of TiO2 using calcium (Ca) was examined. The influence of a molten salt, calcium chloride (CaCl2), on the calciothermic reduction was investigated by conducting experiments at 1123 – 1223 K in an argon (Ar) atmosphere for the duration of 0.5 – 9 h. When CaCl2 was used as a molten salt, the oxygen (O) concentration in Ti decreased to 0.162 mass% owing to the removal of calcium oxide (CaO) from the surface of the Ti particles. In addition, the use of a CaCl2 – lithium chloride (LiCl) molten salt decreased the reaction temperature to 1073 K and the O concentration in the obtained Ti reached 0.333 mass%. Furthermore, after the calciothermic reduction of TiO2 at 1173 K using a perforated crucible, the residual Ca-containing salt was sufficiently separated in-situ from the crucible, and a mixture of Ti and TiH1.924 was produced via hydrogenation at 1023 K by changing the atmosphere gas from Ar to hydrogen gas (H2). The results of this study demonstrate the feasibility of the calciothermic reduction of TiO2 for the eco-friendly production of Ti and TiH2 powders.
Translated title of the contribution | Investigation of the Calciothermic Reduction of TiO2 for the Green Production of Ti and TiH2 Powders |
---|---|
Original language | Korean |
Pages (from-to) | 190-203 |
Number of pages | 14 |
Journal | Journal of Korean Institute of Metals and Materials |
Volume | 62 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2024 |
Keywords
- calciothermic reduction
- calcium chloride
- hydrogen
- lithium chloride
- titanium
- titanium dioxide