Abstract
Concerning the safety aspects of Li+ ion batteries, an epoxy-reinforced thin ceramic film (ERTCF) is prepared by firing and sintering a slurry-casted composite powder film. The ERTCF is composed of Li+ ion conduction channels and is made of high amounts of sintered ceramic Li1+xTi2-xAlx(PO4)3 (LATP) and epoxy polymer with enhanced mechanical properties for solid-state batteries. The 2D and 3D characterizations are conducted not only for showing continuous Li+ ion channels thorough LATP ceramic channels with over 10−4 S cm−1 of ionic conductivity but also to investigate small amounts of epoxy polymer with enhanced mechanical properties. Solid-state Li+ ion cells are fabricated using the ERTCF and they show initial charge–discharge capacities of 139/133 mAh g−1. Furthermore, the scope of the ERTCF is expanded to high-voltage (>8 V) solid-state Li+ ion batteries through a bipolar stacked cell design. Hence, it is expected that the present investigation will significantly contribute in the preparation of the next generation reinforced thin ceramic film electrolytes for high-voltage solid-state batteries.
| Original language | English |
|---|---|
| Article number | 2002008 |
| Journal | Advanced Functional Materials |
| Volume | 31 |
| Issue number | 2 |
| DOIs | |
| State | Published - 11 Jan 2021 |
Keywords
- all-solid-state batteries
- epoxy polymers
- lithium ion batteries
- solid electrolytes