TY - GEN
T1 - A BIM-based Virtual Reality Evacuation Simulation for Fire Safety Management
AU - Panya, David Stephen
AU - Kim, Taehoon
AU - Heo, Minji
AU - Choo, Seungyeon
N1 - Publisher Copyright:
© 2024, Education and research in Computer Aided Architectural Design in Europe. All rights reserved.
PY - 2024
Y1 - 2024
N2 - In contemporary design and construction engineering, Building Information Modeling (BIM) technology significantly influences the evolution of fire safety. This research explores the intersection of fire safety and virtual reality (VR) by introducing an innovative emergency evacuation simulation method grounded in BIM technology. The study aims to establish a robust framework for emergency evacuation simulations by synthesizing fire dynamics, evacuation strategies, and BIM-based VR technologies. By bridging the theoretical-practical gap, the research endeavors to provide stakeholders in the construction industry with a toolset that prioritizes safety while enhancing designs for safer building projects. The study incorporates fire simulation utilizing CFAST, a representative zone model from the Korean National Institute of Standards and Technology. CFAST divides the fire room into high-temperature upper and low- temperature lower layers, assuming a uniform thermal and chemical environment. It interprets fire phenomena through principles such as mass conservation, the first law of thermodynamics, and the ideal gas equation. The study employs Cellular Automata (CA) to design an agent's reaction and behavior for evacuation. This involves creating a model based on CA rules, determining state changes, and designing behaviors accordingly. The study also focuses on formulating a calculation for evacuation time, refining it based on key factors. The integration of CFAST and CA, along with models for fire and evacuation simulations, enhances the accuracy and utility of evacuation simulations. The research introduces computational models and BIM models in a visually immersive experience in VR across 3 types of fire emergency scenarios.
AB - In contemporary design and construction engineering, Building Information Modeling (BIM) technology significantly influences the evolution of fire safety. This research explores the intersection of fire safety and virtual reality (VR) by introducing an innovative emergency evacuation simulation method grounded in BIM technology. The study aims to establish a robust framework for emergency evacuation simulations by synthesizing fire dynamics, evacuation strategies, and BIM-based VR technologies. By bridging the theoretical-practical gap, the research endeavors to provide stakeholders in the construction industry with a toolset that prioritizes safety while enhancing designs for safer building projects. The study incorporates fire simulation utilizing CFAST, a representative zone model from the Korean National Institute of Standards and Technology. CFAST divides the fire room into high-temperature upper and low- temperature lower layers, assuming a uniform thermal and chemical environment. It interprets fire phenomena through principles such as mass conservation, the first law of thermodynamics, and the ideal gas equation. The study employs Cellular Automata (CA) to design an agent's reaction and behavior for evacuation. This involves creating a model based on CA rules, determining state changes, and designing behaviors accordingly. The study also focuses on formulating a calculation for evacuation time, refining it based on key factors. The integration of CFAST and CA, along with models for fire and evacuation simulations, enhances the accuracy and utility of evacuation simulations. The research introduces computational models and BIM models in a visually immersive experience in VR across 3 types of fire emergency scenarios.
KW - BIM
KW - Evacuation Simulation
KW - Fire Safety Management
KW - Virtual Reality
UR - http://www.scopus.com/inward/record.url?scp=85210238769&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85210238769
SN - 9789491207389
T3 - Proceedings of the International Conference on Education and Research in Computer Aided Architectural Design in Europe
SP - 47
EP - 56
BT - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe, eCAADe 2024
A2 - Kontovourkis, Odysseas
A2 - Phocas, Marios C.
A2 - Wurzer, Gabriel
PB - Education and research in Computer Aided Architectural Design in Europe
T2 - 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe, eCAADe 2024
Y2 - 9 September 2024 through 13 September 2024
ER -