A comprehensive cell capacitor energy control strategy of a modular multilevel converter (MMC) without a stiff DC bus voltage source

Shenghui Cui, Sungmin Kim, Jae Jung Jung, Seung Ki Sul

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

60 Scopus citations

Abstract

Cell capacitor energy control of a Modular Multilevel Converter (MMC) is conventionally done by controlling leg current and modulation strategy. In most of literatures, leg current transient is analyzed under an assumption that the DC bus is a stiff DC voltage source. In a real MMC-based HVDC transmission system, however, there's no such virtual stiff DC voltage source and the conventional regulation method can lead to poor dynamics of cell capacitor energy control and even make system unstable. In this paper, the MMC model is revised for circulating current transient analysis. Based on the revised model, a new comprehensive cell capacitor energy control strategy is proposed by updating leg capacitor energy reference on-line and injecting positive and negative sequence circulating currents. Validity of the proposed method is verified by a 7-level scaled version prototype experimental setup.

Original languageEnglish
Title of host publicationAPEC 2014 - 29th Annual IEEE Applied Power Electronics Conference and Exposition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages602-609
Number of pages8
ISBN (Print)9781479923250
DOIs
StatePublished - 2014
Event29th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2014 - Fort Worth, TX, United States
Duration: 16 Mar 201420 Mar 2014

Publication series

NameConference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC

Conference

Conference29th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2014
Country/TerritoryUnited States
CityFort Worth, TX
Period16/03/1420/03/14

Fingerprint

Dive into the research topics of 'A comprehensive cell capacitor energy control strategy of a modular multilevel converter (MMC) without a stiff DC bus voltage source'. Together they form a unique fingerprint.

Cite this