A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month

Unseock Kang, Hyunwoong Park

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

The development of low-cost photocatalysts capable of selectively producing liquid chemicals from CO2 and water with efficiency and durability comparable to typical photosynthetic values remains a great challenge. Herein, we report a facile, environmentally benign synthesis of CuFeO2 and CuO binary films by electrodeposition, and demonstrate that these binary films produce only liquid formate from aqueous CO2 at ∼1% energy efficiency, while driving O2 evolution from water on a wired Pt plate under continuous irradiation of simulated sunlight (AM 1.5G; 100 mW cm-2) over 24 h. The formate production is confirmed by quantitative analysis of H13CO2- produced from 13CO2. A time-resolved photoluminescence study reveals the sub-nanosecond charge transfer in binary CuFeO2 and CuO films, wherein the aqueous CO2 is adsorbed. An as-synthesized photocatalyst film with a three dimensional, double layer configuration shows the continued production of formate for over 17 d. However, the crystalline structure and elemental state of the used photocatalysts undergo gradual chemical reduction. Such a deformation can be thermally healed by recycling the weekly used samples via oxidative annealing. Thus, a single photocatalyst sample produces formate continuously for 35 d.

Original languageEnglish
Pages (from-to)2123-2131
Number of pages9
JournalJournal of Materials Chemistry A
Volume5
Issue number5
DOIs
StatePublished - 2017

Fingerprint

Dive into the research topics of 'A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month'. Together they form a unique fingerprint.

Cite this