Abstract
Methanol extract of Koreana stewartia leaves (SKE) stimulated collagen production in ultraviolet-B (UVB)-irradiated human fibroblast cells. An active compound was isolated from SKE by successive partitioning and chromatography, and the chemical structure was determined to be 3-O-β-D- glucopyranosylspinasterol (spinasterol-Glc) by spectroscopic characterization. Spinasterol-Glc increased collagen production in the supernatant of UVB-irradiated dermal fibroblast cell cultures in a dose-dependent manner. The effects of spinasteol-Glc on expression of procollagen and matrix metalloproteinase-1 (MMP-1) were further evaluated. We found that the compound stimulated collagen production in UVB-treated fibroblasts than in vehicle-treated control cells by about 3-fold. In addition, we also demonstrate that the compound increased the mRNA and protein levels of procollagen in UVB-treated fibroblast cells, while it inhibited expression of MMP-1. These results indicate that spinasterol-Glc protects fibroblast cells from the adverse effects of UV radiation via stimulation of procollagen synthesis as well as inhibition of MMP-1 expression. Spinasterol-Glc may be useful in the future development of therapeutic and cosmetic applications.
Original language | English |
---|---|
Pages (from-to) | 768-773 |
Number of pages | 6 |
Journal | Biological and Pharmaceutical Bulletin |
Volume | 34 |
Issue number | 5 |
DOIs | |
State | Published - May 2011 |
Keywords
- Collagen
- Matrix metalloproteinase-1
- Photoaging
- Spinasterol
- Stewartia koreana