TY - JOUR
T1 - A new sigmoidal transformation for weakly singular integrals in the boundary element method
AU - Yun, Beong In
AU - Kim, Philsu
PY - 2003
Y1 - 2003
N2 - The power of the sigmoidal transformation in weakly singular integrals has been demonstrated by the recent works [A. Sidi, in Numerical Integration IV, H. Brass and G. Hämmerlin, eds., Birkhäuser-Verlag, Berlin, 1993, pp. 359-373; P. R. Johnston, Internat. J. Numer. Methods Engrg., 45 (1999), pp. 1333-1348; P. R. Johnston, Internat. J. Numer. Methods Engrg., 47 (2000), pp. 1709-1730; D. Elliott, Math. Methods Appl. Sci., 20 (1997), pp. 121-132; D. Elliott, J. Austral. Math. Soc. Ser. B, 40 (1998), pp. E77-E137]. Especially, application of this transformation is useful for efficient numerical evaluation of the singular integrals appearing in the usual boundary element method. In this paper, a new sigmoidal transformation containing a parameter b is presented. It is shown that the present transformation, with the Gauss-Legendre quadrature rule, can improve the asymptotic truncation error of the traditional sigmoidal transformations by controlling the parameter. For some examples, we compare the numerical results of the present method with those of the well-known Sidi- and Elliott-transformations to show the superiority of the former.
AB - The power of the sigmoidal transformation in weakly singular integrals has been demonstrated by the recent works [A. Sidi, in Numerical Integration IV, H. Brass and G. Hämmerlin, eds., Birkhäuser-Verlag, Berlin, 1993, pp. 359-373; P. R. Johnston, Internat. J. Numer. Methods Engrg., 45 (1999), pp. 1333-1348; P. R. Johnston, Internat. J. Numer. Methods Engrg., 47 (2000), pp. 1709-1730; D. Elliott, Math. Methods Appl. Sci., 20 (1997), pp. 121-132; D. Elliott, J. Austral. Math. Soc. Ser. B, 40 (1998), pp. E77-E137]. Especially, application of this transformation is useful for efficient numerical evaluation of the singular integrals appearing in the usual boundary element method. In this paper, a new sigmoidal transformation containing a parameter b is presented. It is shown that the present transformation, with the Gauss-Legendre quadrature rule, can improve the asymptotic truncation error of the traditional sigmoidal transformations by controlling the parameter. For some examples, we compare the numerical results of the present method with those of the well-known Sidi- and Elliott-transformations to show the superiority of the former.
KW - Gauss-Legendre quadrature rule
KW - Sigmoidal transformation
KW - Weakly singular integral
UR - http://www.scopus.com/inward/record.url?scp=0042631531&partnerID=8YFLogxK
U2 - 10.1137/S1064827501396191
DO - 10.1137/S1064827501396191
M3 - Article
AN - SCOPUS:0042631531
SN - 1064-8275
VL - 24
SP - 1203
EP - 1217
JO - SIAM Journal on Scientific Computing
JF - SIAM Journal on Scientific Computing
IS - 4
ER -