Abstract
Purpose: The development of a new bifunctional chelator, which holds radiometals strongly in living systems, is a prerequisite for the successful application of diseasespecific biomolecules to medical diagnosis and therapy. Recently, TE2A was reported to make kinetically more stable Cu(II) complexes than TETA. Herein, we report a new synthetic route to TE2A and explore its potential as a bifunctional chelator. Methods: TE2A was synthesized using the regioselective alkylation of benzyl bromoacetate and successive deprotection of the methylene bridge and benzyl group. Salt-free TE2A was radiolabeled with 64Cu and microPET imaging was performed to follow the clearance pattern of the 64Cu-TE2A complex. TE2A was conjugated with cyclic RGD peptide and the TE2A-c(RGDyK) conjugate was radiolabeled with 64Cu. Results: TE2A was prepared in salt-free form from cyclam in an overall yield of 74%. The microPET images showed that 64Cu-TE2A is excreted rapidly from the body by the kidney and liver. TE2A was successfully conjugated with c(RGDyK) peptide through one carboxylate group and the TE2A-c(RGDyK) conjugate was radiolabeled with 64Cu in 94% yield within 30 min. Conclusion: TE2A can be used by itself as a bifunctional chelator without any further structural modification.
Original language | English |
---|---|
Pages (from-to) | 185-192 |
Number of pages | 8 |
Journal | Nuclear Medicine and Molecular Imaging |
Volume | 44 |
Issue number | 3 |
DOIs | |
State | Published - Sep 2010 |
Keywords
- Cu
- Bifunctional chelator
- Conjugation
- RGD peptide
- TE2A