A new synthesis of TE2A-a potential bifunctional chelator for 64Cu

Darpan N. Pandya, Jung Young Kim, Wonjung Kwak, Jeong Chan Park, Manoj B. Gawande, Gwang Il An, Eun Kyoung Ryu, Jeongsoo Yoo

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Purpose: The development of a new bifunctional chelator, which holds radiometals strongly in living systems, is a prerequisite for the successful application of diseasespecific biomolecules to medical diagnosis and therapy. Recently, TE2A was reported to make kinetically more stable Cu(II) complexes than TETA. Herein, we report a new synthetic route to TE2A and explore its potential as a bifunctional chelator. Methods: TE2A was synthesized using the regioselective alkylation of benzyl bromoacetate and successive deprotection of the methylene bridge and benzyl group. Salt-free TE2A was radiolabeled with 64Cu and microPET imaging was performed to follow the clearance pattern of the 64Cu-TE2A complex. TE2A was conjugated with cyclic RGD peptide and the TE2A-c(RGDyK) conjugate was radiolabeled with 64Cu. Results: TE2A was prepared in salt-free form from cyclam in an overall yield of 74%. The microPET images showed that 64Cu-TE2A is excreted rapidly from the body by the kidney and liver. TE2A was successfully conjugated with c(RGDyK) peptide through one carboxylate group and the TE2A-c(RGDyK) conjugate was radiolabeled with 64Cu in 94% yield within 30 min. Conclusion: TE2A can be used by itself as a bifunctional chelator without any further structural modification.

Original languageEnglish
Pages (from-to)185-192
Number of pages8
JournalNuclear Medicine and Molecular Imaging
Volume44
Issue number3
DOIs
StatePublished - Sep 2010

Keywords

  • Cu
  • Bifunctional chelator
  • Conjugation
  • RGD peptide
  • TE2A

Fingerprint

Dive into the research topics of 'A new synthesis of TE2A-a potential bifunctional chelator for 64Cu'. Together they form a unique fingerprint.

Cite this