## Abstract

Let D be an integral domain, t be the so-called t-operation on D; and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also inves-tigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring D[X]N is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring D[X]N_{v} is a t-locally S-Noetherian domain.

Original language | English |
---|---|

Pages (from-to) | 507-514 |

Number of pages | 8 |

Journal | Kyungpook Mathematical Journal |

Volume | 55 |

Issue number | 3 |

DOIs | |

State | Published - 2015 |

## Keywords

- (t-) Nagata ring
- (t-)locally S-Noetherian domain
- Finite (t-)character
- S-Noetherian domain