29 Scopus citations

Abstract

Let D be an integral domain, t be the so-called t-operation on D; and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also inves-tigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring D[X]N is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring D[X]Nv is a t-locally S-Noetherian domain.

Original languageEnglish
Pages (from-to)507-514
Number of pages8
JournalKyungpook Mathematical Journal
Volume55
Issue number3
DOIs
StatePublished - 2015

Keywords

  • (t-) Nagata ring
  • (t-)locally S-Noetherian domain
  • Finite (t-)character
  • S-Noetherian domain

Fingerprint

Dive into the research topics of 'A note on s-noetherian domains'. Together they form a unique fingerprint.

Cite this