TY - JOUR
T1 - A note on s-noetherian domains
AU - Lim, Jung Wook
N1 - Publisher Copyright:
© Kyungpook Mathematical Journal.
PY - 2015
Y1 - 2015
N2 - Let D be an integral domain, t be the so-called t-operation on D; and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also inves-tigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring D[X]N is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring D[X]Nv is a t-locally S-Noetherian domain.
AB - Let D be an integral domain, t be the so-called t-operation on D; and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also inves-tigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring D[X]N is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring D[X]Nv is a t-locally S-Noetherian domain.
KW - (t-) Nagata ring
KW - (t-)locally S-Noetherian domain
KW - Finite (t-)character
KW - S-Noetherian domain
UR - http://www.scopus.com/inward/record.url?scp=84997822087&partnerID=8YFLogxK
U2 - 10.5666/KMJ.2015.55.3.507
DO - 10.5666/KMJ.2015.55.3.507
M3 - Article
AN - SCOPUS:84997822087
SN - 1225-6951
VL - 55
SP - 507
EP - 514
JO - Kyungpook Mathematical Journal
JF - Kyungpook Mathematical Journal
IS - 3
ER -