A probabilistic approach to single channel blind signal separation

Gil Jin Jang, Te Won Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

42 Scopus citations

Abstract

We present a new technique for achieving source separation when given only a single channel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of basis filters in time domain that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single channel data and sets of basis filters. For each time point we infer the source signals and their contribution factors. This inference is possible due to the prior knowledge of the basis filters and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation and our experimental results exhibit a high level of separation performance for mixtures of two music signals as well as the separation of two voice signals.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 15 - Proceedings of the 2002 Conference, NIPS 2002
PublisherNeural information processing systems foundation
ISBN (Print)0262025507, 9780262025508
StatePublished - 2003
Event16th Annual Neural Information Processing Systems Conference, NIPS 2002 - Vancouver, BC, Canada
Duration: 9 Dec 200214 Dec 2002

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Conference

Conference16th Annual Neural Information Processing Systems Conference, NIPS 2002
Country/TerritoryCanada
CityVancouver, BC
Period9/12/0214/12/02

Fingerprint

Dive into the research topics of 'A probabilistic approach to single channel blind signal separation'. Together they form a unique fingerprint.

Cite this