TY - JOUR
T1 - A shared antigen among Babesia species
T2 - Ribosomal phosphoprotein P0 as a universal babesial vaccine candidate
AU - Terkawi, M. Alaa
AU - Jia, Honglin
AU - Gabriel, Aboge
AU - Goo, Youn Kyoung
AU - Nishikawa, Yoshifumi
AU - Yokoyama, Naoaki
AU - Igarashi, Ikuo
AU - Fujisaki, Kozo
AU - Xuan, Xuenan
PY - 2007/12
Y1 - 2007/12
N2 - Babesia gibsoni ribosomal phosphoprotein P0 (BgP0) was previously identified as a cross-protective antigen against Babesia microti infection in mice. Interestingly, the same protein showed considerable antigenicity when tested with serum samples collected from Babesia-infected animals. Moreover, the polyclonal antibody raised against the recombinant BgP0 (rBgP0) recognized the P0 homologues from other Babesia species either by immunoblotting or by immunoscreening. The P0 genes from Babesia caballi, Babesia equi, and Babesia bigemina were then cloned and sequenced. The phylogenic analyses based on the amino acid sequences indicated that BgP0 has high identities with B. caballi P0 (88.1%), B. bigemina P0 (85.6%), Babesia bovis P0 (81.4%), and B. equi P0 (64.9%). Western blot analyses revealed that the corresponding native proteins ranged between 31 and 34 kDa, consistent with predicated molecular weight of Babesia P0. Furthermore, the immunogenic property of anti-rBgP0 IgG was evaluated against a B. bovis in vitro culture. The growth of B. bovis parasites was restricted by anti-rBgP0 IgG in a concentration-dependent manner, and significant reductions in parasitemia were observed only at 1 mg/ml in the culture. Taken together, these data suggest that P0 is a conserved protective antigen among Babesia species and might be a potentially universal vaccine candidate for babesiosis.
AB - Babesia gibsoni ribosomal phosphoprotein P0 (BgP0) was previously identified as a cross-protective antigen against Babesia microti infection in mice. Interestingly, the same protein showed considerable antigenicity when tested with serum samples collected from Babesia-infected animals. Moreover, the polyclonal antibody raised against the recombinant BgP0 (rBgP0) recognized the P0 homologues from other Babesia species either by immunoblotting or by immunoscreening. The P0 genes from Babesia caballi, Babesia equi, and Babesia bigemina were then cloned and sequenced. The phylogenic analyses based on the amino acid sequences indicated that BgP0 has high identities with B. caballi P0 (88.1%), B. bigemina P0 (85.6%), Babesia bovis P0 (81.4%), and B. equi P0 (64.9%). Western blot analyses revealed that the corresponding native proteins ranged between 31 and 34 kDa, consistent with predicated molecular weight of Babesia P0. Furthermore, the immunogenic property of anti-rBgP0 IgG was evaluated against a B. bovis in vitro culture. The growth of B. bovis parasites was restricted by anti-rBgP0 IgG in a concentration-dependent manner, and significant reductions in parasitemia were observed only at 1 mg/ml in the culture. Taken together, these data suggest that P0 is a conserved protective antigen among Babesia species and might be a potentially universal vaccine candidate for babesiosis.
UR - http://www.scopus.com/inward/record.url?scp=35448975212&partnerID=8YFLogxK
U2 - 10.1007/s00436-007-0718-1
DO - 10.1007/s00436-007-0718-1
M3 - Article
C2 - 17823817
AN - SCOPUS:35448975212
SN - 0932-0113
VL - 102
SP - 35
EP - 40
JO - Parasitology Research
JF - Parasitology Research
IS - 1
ER -