Abstract
The characteristics of nonpremixed oxy-fuel flame in a multi-jet burner were experimentally and numerically investigated. The overall flow rate of fuel and oxygen was fixed, and the oxygen feeding ratio (OFR) was varied by 0.25,0.5, and 0.75. The results of numerical simulation were compared with the measured results which are temperature profile and direct flame observation. The probability density function (PDF) model was applied accounting to the description between turbulence and chemistry, and standard k-ε model was used for turbulent flow field. Equilibrium assumption is very reasonable due to fast chemistry of the oxy-fuel combustion. Thus, the equilibrium calculation based on Gibbs free energy minimization was guaranteed to generate the solution of the oxy-fuel combustion. The result was obtained by numerical simulation. The predicted radial temperature profiles were in good agreement with the measured results. The flame length was shorten and was intensified with the decrease of OFR because the mixture of fuel and oxidizer are fast mixed and burnt. The maximum temperature became lower as the OFR increased, as a consequence of large flame surface area.
Original language | English |
---|---|
Pages (from-to) | 504-512 |
Number of pages | 9 |
Journal | Transactions of the Korean Society of Mechanical Engineers, B |
Volume | 32 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2008 |
Keywords
- Multi-jet burner
- Oxy-fuel flame