A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy

Yeon Sik Choi, Hyoyoung Jeong, Rose T. Yin, Raudel Avila, Anna Pfenniger, Jaeyoung Yoo, Jong Yoon Lee, Andreas Tzavelis, Young Joong Lee, Sheena W. Chen, Helen S. Knight, Seungyeob Kim, Hak Young Ahn, Grace Wickerson, Abraham Vázquez-Guardado, Elizabeth Higbee-Dempsey, Bender A. Russo, Michael A. Napolitano, Timothy J. Holleran, Leen Abdul RazzakAlana N. Miniovich, Geumbee Lee, Beth Geist, Brandon Kim, Shuling Han, Jaclyn A. Brennan, Kedar Aras, Sung Soo Kwak, Joohee Kim, Emily Alexandria Waters, Xiangxing Yang, Amy Burrell, Keum San Chun, Claire Liu, Changsheng Wu, Alina Y. Rwei, Alisha N. Spann, Anthony Banks, David Johnson, Zheng Jenny Zhang, Chad R. Haney, Sung Hun Jin, Alan Varteres Sahakian, Yonggang Huang, Gregory D. Trachiotis, Bradley P. Knight, Rishi K. Arora, Igor R. Efimov, John A. Rogers

Research output: Contribution to journalArticlepeer-review

119 Scopus citations

Abstract

Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired power and control systems. This hardware introduces risks for infection, limitations on patient mobility, and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control. We present a transient closed-loop system that combines a time-synchronized, wireless network of skin-integrated devices with an advanced bioresorbable pacemaker to control cardiac rhythms, track cardiopulmonary status, provide multihaptic feedback, and enable transient operation with minimal patient burden. The result provides a range of autonomous, rate-adaptive cardiac pacing capabilities, as demonstrated in rat, canine, and human heart studies. This work establishes an engineering framework for closed-loop temporary electrotherapy using wirelessly linked, body-integrated bioelectronic devices.

Original languageEnglish
Pages (from-to)1006-1012
Number of pages7
JournalScience
Volume376
Issue number6596
DOIs
StatePublished - 27 May 2022

Fingerprint

Dive into the research topics of 'A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy'. Together they form a unique fingerprint.

Cite this