Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials

Jonathan M. Skelton, Desmond Loke, Taehoon Lee, Stephen R. Elliott

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.

Original languageEnglish
Pages (from-to)14223-14230
Number of pages8
JournalACS applied materials & interfaces
Volume7
Issue number26
DOIs
StatePublished - 8 Jul 2015

Keywords

  • ab initio molecular-dynamics simulations
  • brain-inspired/neuromorphic computing
  • computational modeling
  • electronic synapse
  • phase-change materials

Fingerprint

Dive into the research topics of 'Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials'. Together they form a unique fingerprint.

Cite this