Abstract
Silk suture material is primarily composed of silk fibroin and regarded as a non-resorbable material. It is slowly degraded by proteolysis when it is implanted into the body. 4-Hexylresorcinol (4HR) is a well-known antiseptic. In this study, the biodegradability of 4HR-incorporated silk sutures were compared to that of untreated silk sutures and polyglactin 910 sutures, a commercially available resorbable suture. 4HR-incorporated silk sutures exhibited anti-microbial properties. Matrix metalloproteinase (MMP) can digest a wide spectrum of proteins. 4HR increased MMP-2,-3, and-9 expression in RAW264.7 cells. MMP-2,-3, and-9 were able to digest not only silk fibroin but also silk sutures. Consequently, 59.5% of the 4HR-incorporated silk suture material remained at 11 weeks after grafting, which was similar to that of polyglactin 910 degradation (56.4% remained). The residual amount of bare silk suture material at 11 weeks after grafting was 91.5%. The expression levels of MMP-2,-3 and-9 were high in the 4HR-incorporated silk suture-implanted site 12 weeks after implantation. In conclusion, 4HR-treated silk sutures exhibited anti-microbial properties and a similar level of bio-degradation to polyglactin 910 sutures and induced higher expression of MMP-2,-3, and-9 in macrophages.
Original language | English |
---|---|
Article number | 42441 |
Journal | Scientific Reports |
Volume | 7 |
DOIs | |
State | Published - 13 Feb 2017 |