Abstract
Cavitation is an important phenomenon in biomedical acoustics. It can produce both desired outcomes (i.e., local therapeutic effects in vivo) and undesired outcomes (i.e., tissue damage), and it is, thus, important to both understand and direct cavitation fields. Through the use of three-dimensional-printed acoustic lenses and cavitation-sensitive acoustic phantoms, we demonstrate the generation of arbitrary shape two-dimensional (2D) microbubble cavitation fields. In this study, we demonstrate shaping a 1 MHz acoustic beam as the character "7"on a target plane that contains a higher mechanical index than the cavitation threshold for encapsulated microbubbles in a gelatin phantom. The lens pattern is first designed by calculating the phase map of the desired field using an angular spectrum approach. After lens implementation, acoustic pulsing through the lens generated the target acoustic field in a phantom and produced a cavitation map following the intended 2D pattern. The cavitation pattern was similar (with the structural similarity of 0.476) to the acoustic pressure map of the excitation beam.
Original language | English |
---|---|
Article number | 051902 |
Journal | Applied Physics Letters |
Volume | 118 |
Issue number | 5 |
DOIs | |
State | Published - 1 Feb 2021 |