Abstract
ADP-ribosylation factors (ARFs) are small guanosine triphosphatases of the Ras superfamily involved in membrane trafficking and regulation of the actin cytoskeleton. Aplysia Sec7 protein (ApSec7), a guanine nucleotide exchange factor for ARF1 and ARF6, induces neurite outgrowth and plays a key role in 5-hydroxyltryptamine-induced neurite growth and synaptic facilitation in Aplysia sensory-motor synapses. However, the specific role of ARF6 signaling on neurite outgrowth in Aplysia neurons has not been examined. In the present study, we cloned Aplysia ARF6 (ApARF6) and revealed that an overexpression of enhanced green fluorescent protein (EGFP)-fused constitutively active ApARF6 (ApARF6-Q67L-EGFP) could induce neurite outgrowth in Aplysia sensory neurons. Further, we observed that ApARF6-induced neurite outgrowth was inhibited by the co-expression of a Sec7 activity-deficient mutant of ApSec7 (ApSec7-E159K). The pleckstrin homology domain of ApSec7 may bind to active ApARF6 at the plasma membrane and prevent active ApARF6-induced functions, including intracellular vacuole formation in HEK293T cells. The results of the present study suggest that activation of ARF6 signaling could induce neurite outgrowth in Aplysia neurons and may be involved in downstream signaling of ApSec7-induced neurite outgrowth in Aplysia neurons.
Original language | English |
---|---|
Pages (from-to) | 31-38 |
Number of pages | 8 |
Journal | Neurobiology of Learning and Memory |
Volume | 138 |
DOIs | |
State | Published - 1 Feb 2017 |
Keywords
- Aplysia
- ARF6
- Neurite outgrowth
- PH domain
- Sec7
- Synaptic facilitation