Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI

Cheolyong Kim, Jun Young Ahn, Tae Yoo Kim, Won Sik Shin, Inseong Hwang

Research output: Contribution to journalArticlepeer-review

285 Scopus citations


The mechanisms involved in the activation of persulfate by nanosized zero-valent iron (NZVI) were elucidated and the NZVI transformation products identified. Two distinct reaction stages, in terms of the kinetics and radical formation mechanism, were found when phenol was oxidized by the persulfate/NZVI system. In the initial stage, lasting 10 min, Fe0(s) was consumed rapidly and sulfate radicals were produced through activation by aqueous Fe2+. The second stage was governed by Fe catalyzed activation in the presence of aqueous Fe3+ and iron (oxyhydr)oxides in the NZVI shells. The second stage was 3 orders of magnitude slower than the initial stage. An electron balance showed that the sulfate radical yield per mole of persulfate was more than two times higher in the persulfate/NZVI system than in the persulfate/Fe2+ system. Radicals were believed to be produced more efficiently in the persulfate/NZVI system because aqueous Fe2+ was supplied slowly, preventing sulfate radicals being scavenged by excess aqueous Fe2+. In the second stage, the multilayered shell conducted electrons, and magnetite in the shell provided electrons for the activation of persulfate. Iron speciation analysis (including X-ray absorption spectroscopy) results indicated that a shrinking core/growing shell model explained NZVI transformation during the persulfate/NZVI process.

Original languageEnglish
Pages (from-to)3625-3633
Number of pages9
JournalEnvironmental Science and Technology
Issue number6
StatePublished - 20 Mar 2018


Dive into the research topics of 'Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI'. Together they form a unique fingerprint.

Cite this