Abstract
Thrombin plays an important role in diverse neurological processes such as proliferation, cell migration, differentiation and neuroinflammation. In this study, we investigated the effect of thrombin on matrix metalloprotease-9 (MMP-9) expression in rat primary astrocytes. Thrombin (1-10 U/ml) induced a significant increase in MMP-9 activity as measured by gelatin zymography. Thrombin also increased MMP-9 mRNA expression. Among three isotypes of thrombin receptor, i.e. protease-activated receptor (PAR)-1, -3 and -4, PAR1 agonist (1-100 μM) but not PAR3 and PAR4 agonist induced MMP-9 expression. Inhibition of thrombin-induced MMP-9 production by SCH 79797 (10-50 nM), a selective PAR1 receptor antagonist, confirmed that PAR1 is a main receptor for thrombin-induced MMP-9 expression. In astrocytes, thrombin activated Erk1/2, and it was inhibited by PD98059. In this study, thrombin-induced MMP-9 expression was inhibited by PD98059. PAR1 agonist activated Erk1/2 and PD98059 inhibited PAR1 agonist-induced MMP-9 expression. MMP-9 promoter reporter assay confirmed the positive effect of ERK1/2 on MMP-9 expression. These results suggest that the activation of PAR1 mediates thrombin-induced MMP-9 expression through the regulation of Erk1/2.
Original language | English |
---|---|
Pages (from-to) | 368-375 |
Number of pages | 8 |
Journal | Brain Research Bulletin |
Volume | 76 |
Issue number | 4 |
DOIs | |
State | Published - 1 Jul 2008 |
Keywords
- Erk1/2
- MMP-9
- PAR1
- Rat primary astrocytes
- Thrombin