Adaptive Bias Discovery for Learning Debiased Classifier

Jun Hyun Bae, Minho Lee, Heechul Jung

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Training deep neural networks with empirical risk minimization (ERM) often captures dataset biases, hindering generalization to new or unseen data. Previous solutions either require prior knowledge of biases or utilize training intentionally biased models as auxiliaries; however, they still suffer from multiple biases. To address this, we introduce Adaptive Bias Discovery (ABD), a novel learning framework designed to mitigate the impact of multiple unknown biases. ABD trains an auxiliary model to be adapted to biases based on the debiased parameters from the debiasing phase, allowing it to navigate through multiple biases. Then, samples are reweighted based on the discovered biases to update debiased parameters. Extensive evaluations of synthetic experiments and real-world datasets demonstrate that ABD consistently outperforms existing methods, particularly in real-world applications where multiple unknown biases are prevalent.

Original languageEnglish
Title of host publicationComputer Vision – ACCV 2024 - 17th Asian Conference on Computer Vision, Proceedings
EditorsMinsu Cho, Ivan Laptev, Du Tran, Angela Yao, Hongbin Zha
PublisherSpringer Science and Business Media Deutschland GmbH
Pages38-54
Number of pages17
ISBN (Print)9789819609659
DOIs
StatePublished - 2025
Event17th Asian Conference on Computer Vision, ACCV 2024 - Hanoi, Viet Nam
Duration: 8 Dec 202412 Dec 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15479 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th Asian Conference on Computer Vision, ACCV 2024
Country/TerritoryViet Nam
CityHanoi
Period8/12/2412/12/24

Keywords

  • Classification
  • Debiasing
  • Deep Learning
  • Spurious Correlations

Fingerprint

Dive into the research topics of 'Adaptive Bias Discovery for Learning Debiased Classifier'. Together they form a unique fingerprint.

Cite this