TY - JOUR
T1 - Adsorptive and photocatalytic performance of cobalt-doped ZnTiO3/Ti3C2Tx MXene nanohybrids towards tetracycline
T2 - Kinetics and mechanistic insight
AU - Park, Soyoung
AU - Kim, Sewoon
AU - Yea, Yeonji
AU - Saravanakumar, Karunamoorthy
AU - Lee, Eunji
AU - Yoon, Yeomin
AU - Park, Chang Min
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/2/5
Y1 - 2023/2/5
N2 - Tetracycline (TC) antibiotics are widely used in animal husbandry and can cause environmental risk due to its high ecological toxicity and persistence. In this study, cobalt doped/ZnTiO3 (ZTO)/Ti3C2Tx MXene (ZCxTM, x indicates wt% of Co loading) was synthesized and explored to remove TC by adsorption and photocatalysis under visible light irradiation. The as-prepared ZC5TM was characterized using various analytical techniques, and key operating parameters such as solution pH, background ions, and temperature were systematically investigated. Interestingly, ZC5TM (14.9 mg/g) showed excellent adsorption capacity for TC, which was higher than activated carbon (7.7 mg/g), ZTO (4.9 mg/g), ZC3T (5.2 mg/g), ZC5T (5.3 mg/g), MXene (12.1 mg/g), ZTOM (12.5 mg/g), and ZC3TM (12.9 mg/g). The pseudo-second-order kinetics and Langmuir isotherm models well explained the effect of contact time and initial concentrations on the adsorption of TC. The adsorption process was primarily through the electrostatic attraction, surface complexation, and hydrogen bonding. In addition, MXene and Co doped on ZTO served as co-catalyst and reduced recombination rate of photo-generated e–-h+ pairs by the intimate interface of its heterojunction. Thus, ZC5TM was highly effective for the photocatalytic degradation of residual TC after adsorption by showing 18% TC degradation rate, compared to 8% and 9% degradation rate for ZTO and MXene, respectively. There results finally support the feasible use of ZC5TM as efficient adsorbent and photocatalyst in removal of TC in wastewater.
AB - Tetracycline (TC) antibiotics are widely used in animal husbandry and can cause environmental risk due to its high ecological toxicity and persistence. In this study, cobalt doped/ZnTiO3 (ZTO)/Ti3C2Tx MXene (ZCxTM, x indicates wt% of Co loading) was synthesized and explored to remove TC by adsorption and photocatalysis under visible light irradiation. The as-prepared ZC5TM was characterized using various analytical techniques, and key operating parameters such as solution pH, background ions, and temperature were systematically investigated. Interestingly, ZC5TM (14.9 mg/g) showed excellent adsorption capacity for TC, which was higher than activated carbon (7.7 mg/g), ZTO (4.9 mg/g), ZC3T (5.2 mg/g), ZC5T (5.3 mg/g), MXene (12.1 mg/g), ZTOM (12.5 mg/g), and ZC3TM (12.9 mg/g). The pseudo-second-order kinetics and Langmuir isotherm models well explained the effect of contact time and initial concentrations on the adsorption of TC. The adsorption process was primarily through the electrostatic attraction, surface complexation, and hydrogen bonding. In addition, MXene and Co doped on ZTO served as co-catalyst and reduced recombination rate of photo-generated e–-h+ pairs by the intimate interface of its heterojunction. Thus, ZC5TM was highly effective for the photocatalytic degradation of residual TC after adsorption by showing 18% TC degradation rate, compared to 8% and 9% degradation rate for ZTO and MXene, respectively. There results finally support the feasible use of ZC5TM as efficient adsorbent and photocatalyst in removal of TC in wastewater.
KW - Adsorption
KW - MXene
KW - Photodegradation
KW - Tetracycline
KW - ZnTiO
UR - http://www.scopus.com/inward/record.url?scp=85140274907&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2022.130165
DO - 10.1016/j.jhazmat.2022.130165
M3 - Article
C2 - 36272372
AN - SCOPUS:85140274907
SN - 0304-3894
VL - 443
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 130165
ER -