TY - JOUR
T1 - Adsorptive removal of herbicides with similar structures from water over nitrogen-enriched carbon, derived from melamine@metal-azolate framework-6
AU - Bhadra, Biswa Nath
AU - Lee, Hye Jin
AU - Jhung, Sung Hwa
N1 - Publisher Copyright:
© 2021 Elsevier Inc.
PY - 2022/3
Y1 - 2022/3
N2 - Based on the recent concern on the pollution of water bodies with herbicides, adsorptive removal of typical herbicides with similar chemical structures, e. g. clofibric acid (CLFA), methylchlorophenoxypropionic acid or mecoprop (MCPP) and 2,4-dichlorophenoxyacetic acid (2,4-D) from water was studied using a porous nitrogen-enriched carbon. To prepare the nitrogen-enriched carbon, pyrolysis of a melamine (MLM) incorporated metal-azolate framework-6 (MLM(x)@MAF6; x = 0–50 M % of the ligand 2-ethylimidazole for MAF6), that was prepared for the first time via an in situ method, was carried out. The MLM(x)@MAF6-derived carbons (MDC6M(x)s) were characterized and used in the removal of CLFA, MCPP and 2,4-D from water. We found that the MDC6M(25), obtained from MLM(25)@MAF6 with 25% MLM (as the optimum precursor composition), showed the highest maximum adsorption capacity (Q0) of 1031 mg/g for CLFA, compared with any reported adsorbents, so far. The physicochemical properties of CLFA, as well as adsorbents and adsorptions under wide pH conditions, were employed to propose a plausible adsorption mechanism including hydrogen bonding. Remarkably, the porous carbon with enriched nitrogen, derived from MAF6 loaded MLM via in situ method, was very competitive in herbicides adsorption because of the contribution of well-dispersed nitrogen sties on the adsorbent. Finally, MDC6M(25) was suggested as a potential adsorbent for the removal of herbcides, including CLFA, MCPP and 2,4-D, from water, which is highly attractive to mitigate the environmental issue, especially, water pollution by various herbicides.
AB - Based on the recent concern on the pollution of water bodies with herbicides, adsorptive removal of typical herbicides with similar chemical structures, e. g. clofibric acid (CLFA), methylchlorophenoxypropionic acid or mecoprop (MCPP) and 2,4-dichlorophenoxyacetic acid (2,4-D) from water was studied using a porous nitrogen-enriched carbon. To prepare the nitrogen-enriched carbon, pyrolysis of a melamine (MLM) incorporated metal-azolate framework-6 (MLM(x)@MAF6; x = 0–50 M % of the ligand 2-ethylimidazole for MAF6), that was prepared for the first time via an in situ method, was carried out. The MLM(x)@MAF6-derived carbons (MDC6M(x)s) were characterized and used in the removal of CLFA, MCPP and 2,4-D from water. We found that the MDC6M(25), obtained from MLM(25)@MAF6 with 25% MLM (as the optimum precursor composition), showed the highest maximum adsorption capacity (Q0) of 1031 mg/g for CLFA, compared with any reported adsorbents, so far. The physicochemical properties of CLFA, as well as adsorbents and adsorptions under wide pH conditions, were employed to propose a plausible adsorption mechanism including hydrogen bonding. Remarkably, the porous carbon with enriched nitrogen, derived from MAF6 loaded MLM via in situ method, was very competitive in herbicides adsorption because of the contribution of well-dispersed nitrogen sties on the adsorbent. Finally, MDC6M(25) was suggested as a potential adsorbent for the removal of herbcides, including CLFA, MCPP and 2,4-D, from water, which is highly attractive to mitigate the environmental issue, especially, water pollution by various herbicides.
KW - Adsorption
KW - Clofibric acid
KW - Herbicides
KW - Metal-azolate framework-6
KW - Nitrogen-enriched carbon
UR - http://www.scopus.com/inward/record.url?scp=85114144082&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2021.111991
DO - 10.1016/j.envres.2021.111991
M3 - Article
C2 - 34478723
AN - SCOPUS:85114144082
SN - 0013-9351
VL - 204
JO - Environmental Research
JF - Environmental Research
M1 - 111991
ER -