TY - JOUR
T1 - Adsorptive removal of nitroimidazole antibiotics from water using porous carbons derived from melamine-loaded MAF-6
AU - Sarker, Mithun
AU - Shin, Subin
AU - Jhung, Sung Hwa
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/10/15
Y1 - 2019/10/15
N2 - Nitrogen-containing carbons were obtained via pyrolysis of melamine-loaded metal azolate frameworks (named mela@MAF-6), a sub-class of metal organic frameworks. The porosity and defect concentration of the obtained carbons (named as CDM@M-6) were dependent on the quantity of melamine loaded in the mela@MAF-6. The CDM@M-6 s were applied for the adsorptive removal of nitroimidazole antibiotics (NIABs) from water; the performance of CDM@M-6, particularly CDM(0.25)@M-6, was outstanding for the elimination of NIABs such as dimetridazole (DMZ), metronidazole (MNZ), and menidazole (MZ)) from water. The adsorption capacity of CDM(0.25)@M-6 for DMZ, MNZ, and MZ was higher than that of any adsorbent reported so far. The highest adsorptive performance of CDM(0.25)@M-6 for DMZ (Q0: 621 mg/g) and MNZ (Q0: 702 mg/g) was explained by hydrogen bonding, where CDM@M-6 and DMZ/MNZ acted as a H-donor and H-acceptor, respectively. In addition, CDM(0.25)@M-6 could be regenerated via ethanol washing and reused for next cycles without any severe decrease in performance. Therefore, CDM@M-6 is recommended as a suitable adsorbent for the elimination of NIABs from water.
AB - Nitrogen-containing carbons were obtained via pyrolysis of melamine-loaded metal azolate frameworks (named mela@MAF-6), a sub-class of metal organic frameworks. The porosity and defect concentration of the obtained carbons (named as CDM@M-6) were dependent on the quantity of melamine loaded in the mela@MAF-6. The CDM@M-6 s were applied for the adsorptive removal of nitroimidazole antibiotics (NIABs) from water; the performance of CDM@M-6, particularly CDM(0.25)@M-6, was outstanding for the elimination of NIABs such as dimetridazole (DMZ), metronidazole (MNZ), and menidazole (MZ)) from water. The adsorption capacity of CDM(0.25)@M-6 for DMZ, MNZ, and MZ was higher than that of any adsorbent reported so far. The highest adsorptive performance of CDM(0.25)@M-6 for DMZ (Q0: 621 mg/g) and MNZ (Q0: 702 mg/g) was explained by hydrogen bonding, where CDM@M-6 and DMZ/MNZ acted as a H-donor and H-acceptor, respectively. In addition, CDM(0.25)@M-6 could be regenerated via ethanol washing and reused for next cycles without any severe decrease in performance. Therefore, CDM@M-6 is recommended as a suitable adsorbent for the elimination of NIABs from water.
KW - Adsorption
KW - Hydrogen bonding
KW - Metal-azolate frameworks
KW - Nitrogen containing carbons
KW - Nitroimidazole antibiotics
UR - http://www.scopus.com/inward/record.url?scp=85067492398&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2019.120761
DO - 10.1016/j.jhazmat.2019.120761
M3 - Article
C2 - 31228708
AN - SCOPUS:85067492398
SN - 0304-3894
VL - 378
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 120761
ER -