Advances in the colloidal synthesis of two-dimensional semiconductor nanoribbons

Jiwoong Yang, Jae Sung Son, Jung Ho Yu, Jin Joo, Taeghwan Hyeon

Research output: Contribution to journalReview articlepeer-review

62 Scopus citations

Abstract

The shape-controlled synthesis of colloidal semiconductor nanocrystals has attracted a lot of interest because of their shape-dependent physical and chemical properties. With the growing understanding of the shape evolution, several successful syntheses of two-dimensional (2D) nanocrystals have been reported. In this review, we focus on the recent advances in the colloidal synthesis of 2D CdSe nanoribbons with a wurtzite structure. 2D lamellar assemblies of CdSe clusters are generated in the early stage of the synthesis, and then they direct the formation of 2D structure. The dense organic layers on the {112Ì...0} facets significantly stabilize the 2D nanoribbons. The nanoribbons exhibit unique optical properties originating from the strong 1D quantum confinement within their extremely uniform and thin thickness. Interestingly, a large amount of manganese(II) ions can be incorporated into CdSe nanoribbons via a nucleation-controlled doping process. A high doping concentration and the strong confinement effect of the nanoribbons result in enhanced magneto-optical properties that are suitable for spintronic device applications. CdS nanoribbons have a very similar formation pathway, which suggests the cluster-assembled approaches can potentially be extended to various other materials.

Original languageEnglish
Pages (from-to)1190-1198
Number of pages9
JournalChemistry of Materials
Volume25
Issue number8
DOIs
StatePublished - 23 Apr 2013

Keywords

  • cadmium chalcogenide
  • cluster
  • colloidal synthesis
  • nanoribbons
  • shape-control
  • two-dimensional structure

Fingerprint

Dive into the research topics of 'Advances in the colloidal synthesis of two-dimensional semiconductor nanoribbons'. Together they form a unique fingerprint.

Cite this