TY - JOUR
T1 - Advancing Nanofiber Research
T2 - Assessing Nonsolvent Contributions to Structure Using Coaxial Electrospinning
AU - Wei, Wanying
AU - Wildy, Michael
AU - Xu, Kai
AU - Schossig, John
AU - Hu, Xiao
AU - Hyun, Dong Choon
AU - Chen, Wenshuai
AU - Zhang, Cheng
AU - Lu, Ping
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society
PY - 2023/8/8
Y1 - 2023/8/8
N2 - In this study, we explored the influence of molecular interactions and solvent evaporation kinetics on the formation of porous structures in electrospun nanofibers, utilizing polyacrylonitrile (PAN) and polystyrene (PS) as model polymers. The coaxial electrospinning technique was employed to control the injection of water and ethylene glycol (EG) as nonsolvents into polymer jets, demonstrating its potential as a powerful tool for manipulating phase separation processes and fabricating nanofibers with tailored properties. Our findings highlighted the critical role of intermolecular interactions between nonsolvents and polymers in governing phase separation and porous structure formation. Additionally, we observed that the size and polarity of nonsolvent molecules affected the phase separation process. Furthermore, solvent evaporation kinetics were found to significantly impact phase separation, as evidenced by less distinct porous structures when using a rapidly evaporating solvent like tetrahydrofuran (THF) instead of dimethylformamide (DMF). This work offers valuable insights into the intricate relationship between molecular interactions and solvent evaporation kinetics during electrospinning, providing guidance for researchers developing porous nanofibers with specific characteristics for various applications, including filtration, drug delivery, and tissue engineering.
AB - In this study, we explored the influence of molecular interactions and solvent evaporation kinetics on the formation of porous structures in electrospun nanofibers, utilizing polyacrylonitrile (PAN) and polystyrene (PS) as model polymers. The coaxial electrospinning technique was employed to control the injection of water and ethylene glycol (EG) as nonsolvents into polymer jets, demonstrating its potential as a powerful tool for manipulating phase separation processes and fabricating nanofibers with tailored properties. Our findings highlighted the critical role of intermolecular interactions between nonsolvents and polymers in governing phase separation and porous structure formation. Additionally, we observed that the size and polarity of nonsolvent molecules affected the phase separation process. Furthermore, solvent evaporation kinetics were found to significantly impact phase separation, as evidenced by less distinct porous structures when using a rapidly evaporating solvent like tetrahydrofuran (THF) instead of dimethylformamide (DMF). This work offers valuable insights into the intricate relationship between molecular interactions and solvent evaporation kinetics during electrospinning, providing guidance for researchers developing porous nanofibers with specific characteristics for various applications, including filtration, drug delivery, and tissue engineering.
UR - https://www.scopus.com/pages/publications/85164741866
U2 - 10.1021/acs.langmuir.3c01038
DO - 10.1021/acs.langmuir.3c01038
M3 - Article
C2 - 37390484
AN - SCOPUS:85164741866
SN - 0743-7463
VL - 39
SP - 10881
EP - 10891
JO - Langmuir
JF - Langmuir
IS - 31
ER -