13 Scopus citations

Abstract

Segmentation of cursive text remains the challenging phase in the recognition of text. In OCR systems, the recognition accuracy of text is directly dependent on the quality of segmentation. In cursive text OCR systems, the segmentation of handwritten Urdu language text is a complex task because of the context sensitivity and diagonality of the text. This paper presents a line segmentation algorithm for Urdu handwritten and printed text and subsequently to ligatures. In the proposed technique, the counting pixel approach is employed for modified header and baseline detection, in which the system first removes the skewness of the text page, and then the page is converted into lines and ligatures. The algorithm is evaluated on manually generated Urdu printed and handwritten dataset. The proposed algorithm is tested separately on handwritten and printed text, showing 96.7% and 98.3% line accuracy, respectively. Furthermore, the proposed line segmentation algorithm correctly extracts the lines when tested on Arabic text.

Original languageEnglish
Article number8866041
JournalScientific Programming
Volume2020
DOIs
StatePublished - 2020

Fingerprint

Dive into the research topics of 'An efficient skewed line segmentation technique for cursive script OCR'. Together they form a unique fingerprint.

Cite this