Abstract
A novel lamellar inorganic-inorganic nanohybrid (TiO2-pillared MoS2) has been successfully synthesized by an exfoliation- reassembling method. According to the X-ray diffraction and cross-sectional transmission electron microscopy analyses, quantum-sized TiO2 nanoparticles with a diameter of 1 nm are homogeneously distributed in the interlayer space of a two-dimensional MoS2 lattice. Such structural regularity of pillars results in a remarkable enhancement of porosity, as confirmed by nitrogen adsorption-desorption isotherms. The Langmuir specific surface area (186 m2 g-1) of the TiO2-pillared MoS2 has been determined to be remarkably larger than that (12 m 2 g-1) of the restacked MoS2. It is, therefore, evident that adequate intercalation of TiO2 nanoparticles into a MoS2 lattice gives rise to a highly porous structure. Ti K-edge extended X-ray absorption fine structure (EXAFS) analyses also indicate that the anatase nanopillars are stabilized in the interlayer space of MoS2 without any significant agglomeration. From Mo K-edge EXAFS studies, it has been found that the highly distorted octahedral structure of the host lattice in the as-prepared nanohybrid changes into a thermodynamically stable trigonal prismatic one upon heat treatment.
Original language | English |
---|---|
Pages (from-to) | 3492-3498 |
Number of pages | 7 |
Journal | Chemistry of Materials |
Volume | 17 |
Issue number | 13 |
DOIs | |
State | Published - 28 Jun 2005 |