TY - GEN
T1 - Analysis of the wrist-wearable energy harvester with vibrating piezoelectric multiple bimorph cantilevers using fem and topology optimization
AU - Kim, Cheol
AU - Song, Young Geun
N1 - Publisher Copyright:
Copyright © 2014 by ASME.
PY - 2014
Y1 - 2014
N2 - A small wrist-watch-like wearable electric energy harvester which can extract electricity from swinging motions of people's arms while walking has been developed newly. The harvester consists of multiple vibrating piezoelectric cantilevered thin beams attached to a round central hub structure radially with tip masses. The cantilevers are made of a polycarbonate substrate beam, PMN-PT piezoelectric material on its both sides, and a high density tungsten tip mass. The swinging of a human arm with the harvester causes the bending deformations in each blade while walking and then produces electricity from strains in two piezoelectric layers. The swinging motion was formulated mathematically and kinematically in terms of swinging angles, angular velocities and accelerations. Finite element analysis was used to model the cantilevered beams and calculate the voltage output. The optimum shape of piezoelectric layers were calculated on the basis of the topology optimization method specialized for piezoelectric materials.
AB - A small wrist-watch-like wearable electric energy harvester which can extract electricity from swinging motions of people's arms while walking has been developed newly. The harvester consists of multiple vibrating piezoelectric cantilevered thin beams attached to a round central hub structure radially with tip masses. The cantilevers are made of a polycarbonate substrate beam, PMN-PT piezoelectric material on its both sides, and a high density tungsten tip mass. The swinging of a human arm with the harvester causes the bending deformations in each blade while walking and then produces electricity from strains in two piezoelectric layers. The swinging motion was formulated mathematically and kinematically in terms of swinging angles, angular velocities and accelerations. Finite element analysis was used to model the cantilevered beams and calculate the voltage output. The optimum shape of piezoelectric layers were calculated on the basis of the topology optimization method specialized for piezoelectric materials.
UR - http://www.scopus.com/inward/record.url?scp=84920089367&partnerID=8YFLogxK
U2 - 10.1115/SMASIS20147663
DO - 10.1115/SMASIS20147663
M3 - Conference contribution
AN - SCOPUS:84920089367
T3 - ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
BT - ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
PB - Web Portal ASME (American Society of Mechanical Engineers)
T2 - ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
Y2 - 8 September 2014 through 10 September 2014
ER -