Analysis of the wrist-wearable energy harvester with vibrating piezoelectric multiple bimorph cantilevers using fem and topology optimization

Cheol Kim, Young Geun Song

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A small wrist-watch-like wearable electric energy harvester which can extract electricity from swinging motions of people's arms while walking has been developed newly. The harvester consists of multiple vibrating piezoelectric cantilevered thin beams attached to a round central hub structure radially with tip masses. The cantilevers are made of a polycarbonate substrate beam, PMN-PT piezoelectric material on its both sides, and a high density tungsten tip mass. The swinging of a human arm with the harvester causes the bending deformations in each blade while walking and then produces electricity from strains in two piezoelectric layers. The swinging motion was formulated mathematically and kinematically in terms of swinging angles, angular velocities and accelerations. Finite element analysis was used to model the cantilevered beams and calculate the voltage output. The optimum shape of piezoelectric layers were calculated on the basis of the topology optimization method specialized for piezoelectric materials.

Original languageEnglish
Title of host publicationASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
ISBN (Electronic)9780791846155
DOIs
StatePublished - 2014
EventASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 - Newport, United States
Duration: 8 Sep 201410 Sep 2014

Publication series

NameASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
Volume2

Conference

ConferenceASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
Country/TerritoryUnited States
CityNewport
Period8/09/1410/09/14

Fingerprint

Dive into the research topics of 'Analysis of the wrist-wearable energy harvester with vibrating piezoelectric multiple bimorph cantilevers using fem and topology optimization'. Together they form a unique fingerprint.

Cite this