ANN-based stride detection using smartphones for Pedestrian dead reckoning

Youngwoo Kim, Odongo Steven Eyobu, Dong Seog Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Position awareness is a very important issue for internet of thing (IoT) applications using smartphones. Pedestrian dead reckoning (PDR) is one of the methods used to estimate a user's indoor position. The accuracy of a stride detection is very important to guarantee the estimation accuracy of the user location. This paper proposes an algorithm to detect the stride using acceleration spectrogram feature by utilizing the accelerometer in a smartphone. An artificial neural network (ANN) technology is applied to detect the stride. The proposed algorithm has an accuracy of 97.7% for stride detection.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Consumer Electronics, ICCE 2018
EditorsSaraju P. Mohanty, Peter Corcoran, Hai Li, Anirban Sengupta, Jong-Hyouk Lee
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-2
Number of pages2
ISBN (Electronic)9781538630259
DOIs
StatePublished - 26 Mar 2018
Event2018 IEEE International Conference on Consumer Electronics, ICCE 2018 - Las Vegas, United States
Duration: 12 Jan 201814 Jan 2018

Publication series

Name2018 IEEE International Conference on Consumer Electronics, ICCE 2018
Volume2018-January

Conference

Conference2018 IEEE International Conference on Consumer Electronics, ICCE 2018
Country/TerritoryUnited States
CityLas Vegas
Period12/01/1814/01/18

Fingerprint

Dive into the research topics of 'ANN-based stride detection using smartphones for Pedestrian dead reckoning'. Together they form a unique fingerprint.

Cite this