Abstract
The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases. Here, methylthiouracil (MTU), an antithyroid drug, was examined for its effects on lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of MTU were determined by measuring permeability, human neutrophil adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells and mice. We found that post-treatment with MTU inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of human neutrophils to human endothelial cells. MTU induced potent inhibition of LPS-induced endothelial cell protein C receptor (EPCR) shedding. It also suppressed LPS-induced hyperpermeability and neutrophil migration in vivo. Furthermore, MTU suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, and the activation of nuclear factor-κB (NF-κB) and extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, post-treatment with MTU resulted in reduced LPS-induced lethal endotoxemia. These results suggest that MTU exerts anti-inflammatory effects by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.
Original language | English |
---|---|
Pages (from-to) | 374-386 |
Number of pages | 13 |
Journal | Toxicology and Applied Pharmacology |
Volume | 288 |
Issue number | 3 |
DOIs | |
State | Published - 1 Nov 2015 |
Keywords
- Barrier integrity
- Drug repositioning
- Lipopolysaccharide
- Methylthiouracil