Abstract
The interaction of programmed cell death 1 ligand 1 (PD-L1) with its receptor, programmed cell death 1 (PD-1), inhibits T cell responses. Monoclonal antibodies that block this interaction have been shown effective as immunotherapy. However, only a subset of cancers exhibits a durable response to PD-1/PD-L1 blockade. Moreover, antibody-based immune checkpoint blockade is costly and is occasionally accompanied by systemic side effects. To overcome these limitations of antibody-based immune checkpoint blockade, an immune checkpoint-blocking ferritin nanocage displaying 24 PD-L1 binding peptides (PD-L1pep1) on its surface was designed and constructed. These ferritin nanocages displaying PD-L1pep1 (PpNF) specifically bind to PD-L1 expressed on cancer cells or to purified PD-L1 with a ~30 nM binding affinity. The addition of PpNF to co-cultures of T cells and cancer cells inhibited PD-1/PD-L1 interactions and restored T cell activities. In a mouse model of syngeneic colon cancer, PpNF specifically targeted tumors and showed antitumor activity. Moreover, PpNF nanocages encapsulating the chemotherapeutic drug doxorubicin had more potent antitumor activity than a monoclonal antibody against PD-L1. These results demonstrate that ferritin nanocages displaying surface PD-L1pep1 can be efficiently applied for immunotherapy, especially when encapsulating small chemotherapeutic drugs. These nanocages may have promise as an immunotherapeutic nanomedicine against various solid tumors.
Original language | English |
---|---|
Article number | 120685 |
Journal | Biomaterials |
Volume | 270 |
DOIs | |
State | Published - Mar 2021 |
Keywords
- Combination therapy
- Doxorubicin
- Ferritin
- Immune checkpoint
- Immunotherapy
- PD-L1 binding peptide