TY - JOUR
T1 - Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric d-CopA3
AU - Choi, Hyemin
AU - Hwang, Jae Sam
AU - Kim, Ho
AU - Lee, Dong Gun
PY - 2013/10/11
Y1 - 2013/10/11
N2 - In our previous study, coprisin, a 43-mer defensin-like peptide, was derived from the dung beetle, Copris tripartitus, and a 9-mer CopA3 (monomer), truncated coprisin analog peptide, was designed. However, the antifungal effects of CopA3 are not known yet. In this study, the antifungal activity and mechanism of CopA3 were investigated and to develop a more effective antimicrobial peptide under physiological conditions, the enantiomeric d-CopA3 was designed. l- and d-CopA3 had a similar antifungal activity without chiral selectivity, and their activity was more potent than that of melittin used as a positive control. Furthermore, l- and d-CopA3 did not even show any hemolysis against human erythrocytes. Membrane studies using propidium iodide and bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)], suggested that the antifungal effect of l- and d-CopA3 was due to the membrane-active mechanism, by contrast with coprisin possessing apoptotic mechanism without membrane permeabilization. Finally, the proteolytic resistance and antifungal activity of l- and d-CopA3 against trypsin was analyzed by HPLC and colony count assay. The results showed that only d-CopA3 maintained a potent antifungal activity despite the proteolytic condition. Therefore, this study suggests that d-CopA3 has potential as a novel antimicrobial agent.
AB - In our previous study, coprisin, a 43-mer defensin-like peptide, was derived from the dung beetle, Copris tripartitus, and a 9-mer CopA3 (monomer), truncated coprisin analog peptide, was designed. However, the antifungal effects of CopA3 are not known yet. In this study, the antifungal activity and mechanism of CopA3 were investigated and to develop a more effective antimicrobial peptide under physiological conditions, the enantiomeric d-CopA3 was designed. l- and d-CopA3 had a similar antifungal activity without chiral selectivity, and their activity was more potent than that of melittin used as a positive control. Furthermore, l- and d-CopA3 did not even show any hemolysis against human erythrocytes. Membrane studies using propidium iodide and bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)], suggested that the antifungal effect of l- and d-CopA3 was due to the membrane-active mechanism, by contrast with coprisin possessing apoptotic mechanism without membrane permeabilization. Finally, the proteolytic resistance and antifungal activity of l- and d-CopA3 against trypsin was analyzed by HPLC and colony count assay. The results showed that only d-CopA3 maintained a potent antifungal activity despite the proteolytic condition. Therefore, this study suggests that d-CopA3 has potential as a novel antimicrobial agent.
KW - Antimicrobial peptide
KW - CopA3
KW - Coprisin
KW - Enantiomeric peptide
KW - Membrane-active mechanism
UR - http://www.scopus.com/inward/record.url?scp=84885383898&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2013.09.021
DO - 10.1016/j.bbrc.2013.09.021
M3 - Article
C2 - 24041699
AN - SCOPUS:84885383898
SN - 0006-291X
VL - 440
SP - 94
EP - 98
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 1
ER -