Abstract
The antifungal activity and mechanism of SMAP-29 (1-18) (SMAP-29), a cathelicidin-derived antimicrobial peptide deduced from N-terminal sequence of sheep myeloid mRNA, were investigated. SMAP-29 displayed a strong antifungal activity against various fungi. To understand the antifungal mechanism(s) of SMAP-29, we examined the interaction of SMAP-29 with the pathogenic fungus Trichosporon beigelii. Confocal microscopy showed that SMAP-29 was localized in the plasma membrane. The antifungal effects of SMAP-29 were further confirmed by using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a plasma membrane probe. Flow cytometric analysis revealed that SMAP-29 acted in an energy-dependent manner. This interaction is also dependent on the ionic environment. Furthermore, SMAP-29 caused significant morphological changes when testing the membrane disrupting activity using liposomes (phosphatidylcholine/cholesterol; 10:1, w/w), as shown by scanning electron microscopy. The results suggest that SMAP-29 may exert its antifungal activity by disrupting the structure of cell membranes, via direct interaction with the lipid bilayers and irregularly disrupted fungal membranes in an energy- and salt-dependent manner.
Original language | English |
---|---|
Pages (from-to) | 591-596 |
Number of pages | 6 |
Journal | Biochemical and Biophysical Research Communications |
Volume | 295 |
Issue number | 3 |
DOIs | |
State | Published - 2002 |
Keywords
- 1,6-Diphenyl-1,3,5-hexatriene (DPH)
- Antifungal activity
- Cathelicidin-derived antimicrobial peptide
- SMAP-29 (1-18)