Abstract
The aim of this study was to screen lead compounds exhibiting potent in vitro antimicrobial activity against multidrug-resistant (MDR) Acinetobacter baumannii strains from a library of chemical compounds. In a high-throughput screening analysis of 7520 compounds representative of 340,000 small molecules, two 4H-4-oxoquinolizine compounds were the most active against A. baumannii ATCC 17978. Subsequent selection and analysis of 70 4H-4-oxoquinolizine compounds revealed that the top 7 compounds were extremely active against extensively drug-resistant (XDR) A. baumannii isolates. These compounds commonly carried a 1-cyclopropyl-7-fluoro-4-oxo-4H-quinolizine-3-carboxylic acid core structure but had different C-8 and/or C-9 moieties. Minimum inhibitory concentrations (MICs) of the seven compounds against fluoroquinolone-resistant A. baumannii isolates were found to be in the range of 0.02–1.70 µg/mL regardless of the mutation types in the quinolone resistance-determining region (QRDR) of GyrA and ParC. Cytotoxicity of the seven compounds was observed in HeLa and U937 cells at a concentration of 50 µg/mL, which was >32.5- to 119-fold higher than the MIC90 for A. baumannii isolates. In conclusion, novel 4H-4-oxoquinolizine compounds represent a promising scaffold on which to develop antimicrobial agents against drug-resistant A. baumannii strains.
Original language | English |
---|---|
Pages (from-to) | 107-111 |
Number of pages | 5 |
Journal | International Journal of Antimicrobial Agents |
Volume | 49 |
Issue number | 1 |
DOIs | |
State | Published - 1 Jan 2017 |
Keywords
- 4H-4-oxoquinolizine
- Antimicrobial resistance
- Chemical compound
- DNA gyrase inhibitor
- Fluoroquinolone