TY - JOUR
T1 - Antioxidant and Anti-Inflammatory Mechanisms of Lipophilic Fractions from Polyscias fruticosa Leaves Based on Network Pharmacology, In Silico, and In Vitro Approaches
AU - Rarison, Razanamanana H.G.
AU - Truong, Van Long
AU - Yoon, Byoung Hoon
AU - Park, Ji Won
AU - Jeong, Woo Sik
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/10
Y1 - 2023/10
N2 - Polyscias fruticosa leaf (PFL) has been used in food and traditional medicine for the treatment of rheumatism, ischemia, and neuralgia. However, the lipophilic components of PFL and their biological properties remain unknown. This study, integrating network pharmacology analysis with in silico and in vitro approaches, aimed to elucidate the antioxidant and anti-inflammatory capacities of lipophilic extracts from PFL. A total of 71 lipophilic compounds were identified in PFL using gas chromatography–mass spectrometry. Network pharmacology and molecular docking analyses showed that key active compounds, mainly phytosterols and sesquiterpenes, were responsible for regulating core target genes, such as PTGS2, TLR4, NFE2L2, PRKCD, KEAP1, NFKB1, NR1l2, PTGS1, AR, and CYP3A4, which were mostly enriched in oxidative stress and inflammation-related pathways. Furthermore, lipophilic extracts from PFL offered powerful antioxidant capacities, as evident in our cell-free antioxidant assays. These extracts also provided a protection against oxidative stress by inducing the expression of catalase and heme oxygenase-1 in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Additionally, lipophilic fractions from PFL showed anti-inflammatory potential in downregulating the level of pro-inflammatory factors in LPS-treated macrophages. Overall, these findings provide valuable insights into the antioxidant and anti-inflammatory properties of lipophilic extracts from PFL, which can be used as a fundamental basis for developing nutraceuticals and functional foods.
AB - Polyscias fruticosa leaf (PFL) has been used in food and traditional medicine for the treatment of rheumatism, ischemia, and neuralgia. However, the lipophilic components of PFL and their biological properties remain unknown. This study, integrating network pharmacology analysis with in silico and in vitro approaches, aimed to elucidate the antioxidant and anti-inflammatory capacities of lipophilic extracts from PFL. A total of 71 lipophilic compounds were identified in PFL using gas chromatography–mass spectrometry. Network pharmacology and molecular docking analyses showed that key active compounds, mainly phytosterols and sesquiterpenes, were responsible for regulating core target genes, such as PTGS2, TLR4, NFE2L2, PRKCD, KEAP1, NFKB1, NR1l2, PTGS1, AR, and CYP3A4, which were mostly enriched in oxidative stress and inflammation-related pathways. Furthermore, lipophilic extracts from PFL offered powerful antioxidant capacities, as evident in our cell-free antioxidant assays. These extracts also provided a protection against oxidative stress by inducing the expression of catalase and heme oxygenase-1 in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Additionally, lipophilic fractions from PFL showed anti-inflammatory potential in downregulating the level of pro-inflammatory factors in LPS-treated macrophages. Overall, these findings provide valuable insights into the antioxidant and anti-inflammatory properties of lipophilic extracts from PFL, which can be used as a fundamental basis for developing nutraceuticals and functional foods.
KW - anti-inflammation
KW - antioxidant
KW - molecular docking
KW - network pharmacology
KW - nutraceuticals
KW - Polyscias fruticosa leaf
UR - http://www.scopus.com/inward/record.url?scp=85173816898&partnerID=8YFLogxK
U2 - 10.3390/foods12193643
DO - 10.3390/foods12193643
M3 - Article
AN - SCOPUS:85173816898
SN - 2304-8158
VL - 12
JO - Foods
JF - Foods
IS - 19
M1 - 3643
ER -