TY - JOUR
T1 - Antiseptic effects of dabrafenib on TGFBIp-induced septic responses
AU - Lee, In Chul
AU - Bae, Jong Sup
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/12/25
Y1 - 2017/12/25
N2 - Transforming growth factor-β-induced protein (TGFBIp), an extracellular protein, is expressed on several cell types in response to TGF-β stimulation. Human umbilical vein endothelial cell (HUVEC)-derived TGFBIp functions as a mediator of sepsis. Screening of bioactive compound libraries is an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases (drug repositioning). Dabrafenib (DAB), a B-Raf inhibitor, was initially used for treating metastatic melanoma. The present study determined whether DAB modulated TGFBIp-mediated septic responses in HUVECs and in mice. Antiseptic functions of DAB were examined by measuring permeability, leukocyte adhesion and migration, and proinflammatory protein activation in TGFBIp-stimulated HUVECs and mice. In addition, beneficial effects of DAB on survival rate were examined using a mouse model of sepsis. We found that DAB inhibited TGFBIp-induced vascular barrier disruption, cell adhesion molecule (CAM) expression, and neutrophil adhesion/transendothelial migration toward human endothelial cells. DAB also suppressed TGFBIp-induced hyperpermeability and leukocyte migration in vivo. These results suggest that DAB exerts anti-inflammatory effects by inhibiting hyperpermeability, CAM expression, and leukocyte adhesion and migration, indicating its utility for treating vascular inflammatory diseases.
AB - Transforming growth factor-β-induced protein (TGFBIp), an extracellular protein, is expressed on several cell types in response to TGF-β stimulation. Human umbilical vein endothelial cell (HUVEC)-derived TGFBIp functions as a mediator of sepsis. Screening of bioactive compound libraries is an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases (drug repositioning). Dabrafenib (DAB), a B-Raf inhibitor, was initially used for treating metastatic melanoma. The present study determined whether DAB modulated TGFBIp-mediated septic responses in HUVECs and in mice. Antiseptic functions of DAB were examined by measuring permeability, leukocyte adhesion and migration, and proinflammatory protein activation in TGFBIp-stimulated HUVECs and mice. In addition, beneficial effects of DAB on survival rate were examined using a mouse model of sepsis. We found that DAB inhibited TGFBIp-induced vascular barrier disruption, cell adhesion molecule (CAM) expression, and neutrophil adhesion/transendothelial migration toward human endothelial cells. DAB also suppressed TGFBIp-induced hyperpermeability and leukocyte migration in vivo. These results suggest that DAB exerts anti-inflammatory effects by inhibiting hyperpermeability, CAM expression, and leukocyte adhesion and migration, indicating its utility for treating vascular inflammatory diseases.
KW - Dabrafenib
KW - Inflammation
KW - Sepsis
KW - TGFBIp
UR - http://www.scopus.com/inward/record.url?scp=85032854634&partnerID=8YFLogxK
U2 - 10.1016/j.cbi.2017.10.016
DO - 10.1016/j.cbi.2017.10.016
M3 - Article
C2 - 29042256
AN - SCOPUS:85032854634
SN - 0009-2797
VL - 278
SP - 92
EP - 100
JO - Chemico-Biological Interactions
JF - Chemico-Biological Interactions
ER -