TY - JOUR
T1 - Application of an acrylic polymer and epoxy emulsion to red clay and sand
AU - Park, Sung Sik
AU - Lee, Jung Shin
AU - Yoon, Keun Byoung
AU - Woo, Seung Wook
AU - Lee, Dong Eun
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - The use of nontraditional soil stabilizers increases. Various new soil binding agents are under study to augment renewability and sustainability of an earth structure. However, despite increasing interest involved in red clay, there is minimal research investigating the stabilizing red clay with polymer. This paper presents the findings obtained by applying the acrylic polymer and epoxy emulsion as binding agent for red clay and that for sand. The epoxy–hardener ratio, amount of epoxy emulsion, and amount of polymer aqueous solution were manipulated to quantify their effects on red clay and sand, respectively. After compacting a pair of cylindrical samples of which diameter and height are 5 cm and 10 cm, respectively, it is cured for 3 and 7 days in a controlled condition. Each pair is produced to represent the engineering performance at each data point in the solution space. An optimal composition of the binding agents for red clay and that for sand mixture are identified by experimenting every data point. In addition, given lime into each sample, the max-imum unconfined compressive strength (UCS) endured by red clay sample and that by sand sample are 2243 and 1493 kPa, respectively. The UCS obtained by the sample mixed with clay and sand reaches 2671 kPa after seven days of curing. It confirms that the addition of lime remarkably im-proves the UCS. When the clay–sand mixture, of which the ratio is 70:30, includes 5% lime, the UCS of the mixture outperforms. Indeed, these findings, i.e., the optimal proportion of components, may contribute to the increase of initial and long‐term strength of an earth structure, hence improving the renewability and sustainability of the earth construction method.
AB - The use of nontraditional soil stabilizers increases. Various new soil binding agents are under study to augment renewability and sustainability of an earth structure. However, despite increasing interest involved in red clay, there is minimal research investigating the stabilizing red clay with polymer. This paper presents the findings obtained by applying the acrylic polymer and epoxy emulsion as binding agent for red clay and that for sand. The epoxy–hardener ratio, amount of epoxy emulsion, and amount of polymer aqueous solution were manipulated to quantify their effects on red clay and sand, respectively. After compacting a pair of cylindrical samples of which diameter and height are 5 cm and 10 cm, respectively, it is cured for 3 and 7 days in a controlled condition. Each pair is produced to represent the engineering performance at each data point in the solution space. An optimal composition of the binding agents for red clay and that for sand mixture are identified by experimenting every data point. In addition, given lime into each sample, the max-imum unconfined compressive strength (UCS) endured by red clay sample and that by sand sample are 2243 and 1493 kPa, respectively. The UCS obtained by the sample mixed with clay and sand reaches 2671 kPa after seven days of curing. It confirms that the addition of lime remarkably im-proves the UCS. When the clay–sand mixture, of which the ratio is 70:30, includes 5% lime, the UCS of the mixture outperforms. Indeed, these findings, i.e., the optimal proportion of components, may contribute to the increase of initial and long‐term strength of an earth structure, hence improving the renewability and sustainability of the earth construction method.
KW - Acrylic polymer
KW - Epoxy
KW - Red clay
KW - Sand
KW - Unconfined compressive strength
UR - http://www.scopus.com/inward/record.url?scp=85116713711&partnerID=8YFLogxK
U2 - 10.3390/polym13193410
DO - 10.3390/polym13193410
M3 - Article
AN - SCOPUS:85116713711
SN - 2073-4360
VL - 13
JO - Polymers
JF - Polymers
IS - 19
M1 - 3410
ER -