TY - JOUR
T1 - Article effects of changes to architectural elements on human relaxation-arousal responses
T2 - Based on vr and eeg
AU - Kim, Sanghee
AU - Park, Hyejin
AU - Choo, Seungyeon
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4/2
Y1 - 2021/4/2
N2 - This study combines electroencephalogram (EEG) with virtual reality (VR) technologies to measure the EEG responses of users experiencing changes to architectural elements. We analyze the ratio of alpha to beta waves (RAB) indicators to determine the pre-and poststimulation changes. In our methodology, thirty-three females experience using private rooms in a postpartum care center participated in the experiment. Their brain waves are measured while they are experiencing the VR space of a private room in a postpartum care center. Three architectural elements (i.e., aspect ratio of space, ceiling height, and window ratio) are varied in the VR space. In addition, a self-report questionnaire is administered to examine whether the responses are consistent with the results of the EEG response analysis. As a result, statistically significant differences (p < 0.05) are observed in the changes in the RAB indicator values of the pre-and poststimulation EEG while the subjects are experiencing the VR space where the architectural elements are varied. That is, the effects of the changes to architectural elements on users’ relaxation-arousal responses are statistically verified. Notably, in all the RAB indicator values where significant differences are observed, the poststimulation RAB decreases in comparison to the prestimulus ratios, which is indicative of the arousal response. However, the arousal levels vary across the architectural elements, which implies it would be possible to find out the elements that could induce less arousal response using the proposed method. Moreover, following the experience in the VR space, certain lobes of the brain (F4 and P3 EEG channels) show statistically significant differences in the relaxation-arousal responses. Unlike previous studies, which measured users’ physiological responses to abstract and primordial spatial elements, this study extends the boundaries of the literature by applying the architectural elements applicable to design in practice.
AB - This study combines electroencephalogram (EEG) with virtual reality (VR) technologies to measure the EEG responses of users experiencing changes to architectural elements. We analyze the ratio of alpha to beta waves (RAB) indicators to determine the pre-and poststimulation changes. In our methodology, thirty-three females experience using private rooms in a postpartum care center participated in the experiment. Their brain waves are measured while they are experiencing the VR space of a private room in a postpartum care center. Three architectural elements (i.e., aspect ratio of space, ceiling height, and window ratio) are varied in the VR space. In addition, a self-report questionnaire is administered to examine whether the responses are consistent with the results of the EEG response analysis. As a result, statistically significant differences (p < 0.05) are observed in the changes in the RAB indicator values of the pre-and poststimulation EEG while the subjects are experiencing the VR space where the architectural elements are varied. That is, the effects of the changes to architectural elements on users’ relaxation-arousal responses are statistically verified. Notably, in all the RAB indicator values where significant differences are observed, the poststimulation RAB decreases in comparison to the prestimulus ratios, which is indicative of the arousal response. However, the arousal levels vary across the architectural elements, which implies it would be possible to find out the elements that could induce less arousal response using the proposed method. Moreover, following the experience in the VR space, certain lobes of the brain (F4 and P3 EEG channels) show statistically significant differences in the relaxation-arousal responses. Unlike previous studies, which measured users’ physiological responses to abstract and primordial spatial elements, this study extends the boundaries of the literature by applying the architectural elements applicable to design in practice.
KW - Architectural elements
KW - EEG
KW - Healing space
KW - Relaxation-arousal reaction
KW - VR
UR - http://www.scopus.com/inward/record.url?scp=85104453498&partnerID=8YFLogxK
U2 - 10.3390/ijerph18084305
DO - 10.3390/ijerph18084305
M3 - Article
C2 - 33921601
AN - SCOPUS:85104453498
SN - 1661-7827
VL - 18
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 8
M1 - 4305
ER -