Abstract
Although nanoscale deformation, such as nanostrain in iron-chalcogenide (FeSexTe1−x, FST) thin films, has attracted attention owing to its enhancement of general superconducting properties, including critical current density (Jc) and critical transition temperature, the development of this technique has proven to be an extremely challenging and complex process thus far. Herein, we successfully fabricated an epitaxial FST thin film with uniformly distributed nanostrain by injection of a trace amount of CeO2 inside an FST matrix using sequential pulsed laser deposition. By means of transmission electron microscopy and geometric phase analysis, we verified that the injection of a trace amount of CeO2 forms nanoscale defects, with a nanostrained region of tensile strain (εzz ≅ 0.02) along the c-axis of the FST matrix. This nanostrained FST thin film achieves a remarkable Jc of 3.5 MA/cm2 under a self-field at 6 K and a highly enhanced Jc under the entire magnetic field with respect to those of a pristine FST thin film.
Original language | English |
---|---|
Article number | 7 |
Journal | NPG Asia Materials |
Volume | 12 |
Issue number | 1 |
DOIs | |
State | Published - 1 Dec 2020 |