TY - JOUR
T1 - Assessing dengue control in Tokyo, 2014
AU - Yuan, Baoyin
AU - Lee, Hyojung
AU - Nishiura, Hiroshi
N1 - Publisher Copyright:
© 2019 Yuan et al.
PY - 2019/6
Y1 - 2019/6
N2 - Background In summer 2014, an autochthonous outbreak of dengue occurred in Tokyo, Japan, in which Yoyogi Park acted as the focal area of transmission. Recognizing the outbreak, concerted efforts were made to control viral spread, which included mosquito control, public announcement of the outbreak, and a total ban on entering the park. We sought to assess the effectiveness of these control measures. Methodology/Principal findings We used a mathematical model to describe the transmission dynamics. Using dates of exposure and illness onset, we categorized cases into three groups according to the availability of these datasets. The infection process was parametrically modeled by generation, and convolution of the infection process and the incubation period was fitted to the data. By estimating the effective reproduction number, we determined that the effect of dengue risk communication together with mosquito control from 28 August 2014 was insufficiently large to lower the reproduction number to below 1. However, once Yoyogi Park was closed on 4 September, the value of the effective reproduction number began to fall below 1, and the associated relative reduction in the effective reproduction number was estimated to be 20%–60%. The mean incubation period was an estimated 5.8 days. Conclusions/Significance Regardless of the assumed number of generations of cases, the combined effect of mosquito control, risk communication, and park closure appeared to be successful in interrupting the chain of dengue transmission in Tokyo.
AB - Background In summer 2014, an autochthonous outbreak of dengue occurred in Tokyo, Japan, in which Yoyogi Park acted as the focal area of transmission. Recognizing the outbreak, concerted efforts were made to control viral spread, which included mosquito control, public announcement of the outbreak, and a total ban on entering the park. We sought to assess the effectiveness of these control measures. Methodology/Principal findings We used a mathematical model to describe the transmission dynamics. Using dates of exposure and illness onset, we categorized cases into three groups according to the availability of these datasets. The infection process was parametrically modeled by generation, and convolution of the infection process and the incubation period was fitted to the data. By estimating the effective reproduction number, we determined that the effect of dengue risk communication together with mosquito control from 28 August 2014 was insufficiently large to lower the reproduction number to below 1. However, once Yoyogi Park was closed on 4 September, the value of the effective reproduction number began to fall below 1, and the associated relative reduction in the effective reproduction number was estimated to be 20%–60%. The mean incubation period was an estimated 5.8 days. Conclusions/Significance Regardless of the assumed number of generations of cases, the combined effect of mosquito control, risk communication, and park closure appeared to be successful in interrupting the chain of dengue transmission in Tokyo.
UR - http://www.scopus.com/inward/record.url?scp=85068562719&partnerID=8YFLogxK
U2 - 10.1371/journal.pntd.0007468
DO - 10.1371/journal.pntd.0007468
M3 - Article
C2 - 31226116
AN - SCOPUS:85068562719
SN - 1935-2727
VL - 13
JO - PLoS Neglected Tropical Diseases
JF - PLoS Neglected Tropical Diseases
IS - 6
M1 - e0007468
ER -