TY - JOUR
T1 - Bar Classification Based on the Potential Map
AU - Lee, Yun Hee
AU - Park, Myeong Gu
AU - Ann, Hong Bae
AU - Kim, Taehyun
AU - Seo, Woo Young
N1 - Publisher Copyright:
© 2020. The American Astronomical Society. All rights reserved.
PY - 2020/8/10
Y1 - 2020/8/10
N2 - We introduce a new approach to classify barred galaxies that utilizes the transverse-to-radial force ratio map (ratio map, hereafter) in a different manner from previous studies. When we display the ratio map in polar coordinates, barred galaxies appear as four aligned, horizontal thick slabs. This characteristic feature enables us to successfully classify barred and nonbarred galaxies with an accuracy of 87%. It yields a bar fraction of 53%, including both SBs and SABs, when applied to 884 nearby (z < 0.01) spiral galaxies from the Sloan Digital Sky Survey/DR7. It also provides the bar strength and length measurements, in particular, separated from the spiral arms. They show good correlations with the measures estimated from ellipse fitting and Fourier analysis. However, we find different tendencies of the bar strength measurements in terms of the Hubble sequence: as the Hubble sequence increases (toward late types), the bar strength and bar ellipticity increase, whereas the dipole Fourier amplitude decreases. We show that the bulge affects the estimation of the bar strength differently, depending on the classification methods. The bulge causes the bar length to be overestimated in all three methods. Meanwhile, we find that barred galaxies show two types of radial profiles of the angle-averaged force ratio: one has a maximum peak (type M) and the other a plateau (type P). Comparison with numerical simulations suggests that type-M bars are more mature than type-P bars in terms of evolutionary stage.
AB - We introduce a new approach to classify barred galaxies that utilizes the transverse-to-radial force ratio map (ratio map, hereafter) in a different manner from previous studies. When we display the ratio map in polar coordinates, barred galaxies appear as four aligned, horizontal thick slabs. This characteristic feature enables us to successfully classify barred and nonbarred galaxies with an accuracy of 87%. It yields a bar fraction of 53%, including both SBs and SABs, when applied to 884 nearby (z < 0.01) spiral galaxies from the Sloan Digital Sky Survey/DR7. It also provides the bar strength and length measurements, in particular, separated from the spiral arms. They show good correlations with the measures estimated from ellipse fitting and Fourier analysis. However, we find different tendencies of the bar strength measurements in terms of the Hubble sequence: as the Hubble sequence increases (toward late types), the bar strength and bar ellipticity increase, whereas the dipole Fourier amplitude decreases. We show that the bulge affects the estimation of the bar strength differently, depending on the classification methods. The bulge causes the bar length to be overestimated in all three methods. Meanwhile, we find that barred galaxies show two types of radial profiles of the angle-averaged force ratio: one has a maximum peak (type M) and the other a plateau (type P). Comparison with numerical simulations suggests that type-M bars are more mature than type-P bars in terms of evolutionary stage.
UR - http://www.scopus.com/inward/record.url?scp=85091073214&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/aba4a4
DO - 10.3847/1538-4357/aba4a4
M3 - Article
AN - SCOPUS:85091073214
SN - 0004-637X
VL - 899
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 4
ER -