Beneficial effects of cellular coinfection resolve inefficiency in influenza A virus transcription

Jessica R. Shartouny, Chung Young Lee, Gabrielle K. Delima, Anice C. Lowen

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

For diverse viruses, cellular infection with single vs. multiple virions can yield distinct biological outcomes. We previously found that influenza A/guinea fowl/Hong Kong/WF10/99 (H9N2) virus (GFHK99) displays a particularly high reliance on multiple infection in mammalian cells. Here, we sought to uncover the viral processes underlying this phenotype. We found that the need for multiple infection maps to amino acid 26K of the viral PA protein. PA 26K suppresses endonuclease activity and viral transcription, specifically within cells infected at low multiplicity. In the context of the higher functioning PA 26E, inhibition of PA using baloxavir acid augments reliance on multiple infection. Together, these data suggest a model in which sub-optimal activity of the GFHK99 endonuclease results in inefficient priming of viral transcription, an insufficiency which can be overcome with the introduction of additional viral ribonucleoprotein templates to the cell. More broadly, the finding that deficiency in a core viral function is ameliorated through multiple infection suggests that the fitness effects of many viral mutations are likely to be modulated by multiplicity of infection, such that the shape of fitness landscapes varies with viral densities.

Original languageEnglish
Article numbere1010865
JournalPLoS Pathogens
Volume18
Issue number9
DOIs
StatePublished - Sep 2022

Fingerprint

Dive into the research topics of 'Beneficial effects of cellular coinfection resolve inefficiency in influenza A virus transcription'. Together they form a unique fingerprint.

Cite this