TY - JOUR
T1 - Benefits of Stochastic Weight Averaging in Developing Neural Network Radiation Scheme for Numerical Weather Prediction
AU - Song, Hwan Jin
AU - Roh, Soonyoung
AU - Lee, Juho
AU - Nam, Giung
AU - Yun, Eunggu
AU - Yoon, Jongmin
AU - Kim, Park Sa
N1 - Publisher Copyright:
© 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
PY - 2022/10
Y1 - 2022/10
N2 - Stochastic weight averaging (SWA) was applied to improve the radiation emulator based on a sequential neural network (SNN) in a numerical weather prediction model over Korea. While the SWA has advantages in terms of generalization such as the ensemble model, the computational cost is maintained at the same level as that of a single model. In this study, the performances of both emulators were evaluated under ideal and real case frameworks. Various sensitivity experiments using different sampling ratios, activation functions, hidden layers, and batch sizes were also conducted. The emulators showed a 60-fold speedup for the radiation processes and 84%–87% reduction of the total computation. In the ideal simulation, compared to the infrequent radiation scheme by 60 times, SNN improved forecast errors by 5.8%–14.1%, and SWA further increased these improvements by 18.2%–26.9%. In the real case simulation, SNN showed 8.8% and 4.7% improvements for longwave and shortwave (SW) fluxes compared to the infrequent method; however, these improvements decreased significantly after 5 days, resulting in 1.8% larger error for skin temperature. By contrast, SWA showed stable 1-week forecast features with 12.6%, 8.0%, and 4.4% improvements in longwave and SW fluxes, and skin temperature, respectively. Although the use of two hidden layers showed the best performance in this study, it was thought that the optimal number of hidden layers could differ depending on the given problem. Compared to temperature and precipitation observations, all experiments showed a variability of error within 1%, implying that the operational use of the developed emulators is possible.
AB - Stochastic weight averaging (SWA) was applied to improve the radiation emulator based on a sequential neural network (SNN) in a numerical weather prediction model over Korea. While the SWA has advantages in terms of generalization such as the ensemble model, the computational cost is maintained at the same level as that of a single model. In this study, the performances of both emulators were evaluated under ideal and real case frameworks. Various sensitivity experiments using different sampling ratios, activation functions, hidden layers, and batch sizes were also conducted. The emulators showed a 60-fold speedup for the radiation processes and 84%–87% reduction of the total computation. In the ideal simulation, compared to the infrequent radiation scheme by 60 times, SNN improved forecast errors by 5.8%–14.1%, and SWA further increased these improvements by 18.2%–26.9%. In the real case simulation, SNN showed 8.8% and 4.7% improvements for longwave and shortwave (SW) fluxes compared to the infrequent method; however, these improvements decreased significantly after 5 days, resulting in 1.8% larger error for skin temperature. By contrast, SWA showed stable 1-week forecast features with 12.6%, 8.0%, and 4.4% improvements in longwave and SW fluxes, and skin temperature, respectively. Although the use of two hidden layers showed the best performance in this study, it was thought that the optimal number of hidden layers could differ depending on the given problem. Compared to temperature and precipitation observations, all experiments showed a variability of error within 1%, implying that the operational use of the developed emulators is possible.
KW - RRTMG
KW - WRF
KW - emulator
KW - neural network
KW - speedup
KW - stochastic weight averaging
UR - http://www.scopus.com/inward/record.url?scp=85141686664&partnerID=8YFLogxK
U2 - 10.1029/2021MS002921
DO - 10.1029/2021MS002921
M3 - Article
AN - SCOPUS:85141686664
SN - 1942-2466
VL - 14
JO - Journal of Advances in Modeling Earth Systems
JF - Journal of Advances in Modeling Earth Systems
IS - 10
M1 - e2021MS002921
ER -