Abstract
We study the latitudinal distribution of sunspots observed from 1874 to 2009 using the center-of-latitude (COL). We calculate COL by taking the area-weighted mean latitude of sunspots for each calendar month. We then form the latitudinal distribution of COL for the sunspots appearing in the northern and southern hemispheres separately, and in both hemispheres with unsigned and signed latitudes, respectively. We repeat the analysis with subsets which are divided based on the criterion of which hemisphere is dominant for a given solar cycle. Our primary findings are as follows: (1) COL is not monotonically decreasing with time in each cycle. Small humps can be seen (or short plateaus) around every solar maxima. (2) The distribution of COL resulting from each hemisphere is bimodal, which can well be represented by the double Gaussian function. (3) As far as the primary component of the double Gaussian function is concerned, for a given data subset, the distributions due to the sunspots appearing in two different hemispheres are alike. Regardless of which hemisphere is magnetically dominant, the primary component of the double Gaussian function seems relatively unchanged. (4) When the northern (southern) hemisphere is dominant the width of the secondary component of the double Gaussian function in the northern (southern) hemisphere case is about twice as wide as that in the southern (northern) hemisphere. (5) For the distribution of the COL averaged with signed latitude, whose distribution is basically described by a single Gaussian function, it is shifted to the positive (negative) side when the northern (southern) hemisphere is dominant. Finally, we conclude by briefly discussing the implications of these findings on the variations in the solar activity.
Original language | English |
---|---|
Pages (from-to) | 247-253 |
Number of pages | 7 |
Journal | New Astronomy |
Volume | 17 |
Issue number | 3 |
DOIs | |
State | Published - Apr 2012 |
Keywords
- Methods: data analysis
- Sun: activity
- Sun: sunspots