TY - JOUR
T1 - Bioactive glass-poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks
AU - Yun, Hui Suk
AU - Kim, Seung Eon
AU - Park, Eui Kyun
PY - 2011/3/12
Y1 - 2011/3/12
N2 - Hierarchically mesoporous-macroporous-giant-porous bioactive glass/poly ε-caprolactone (PCL) composite scaffolds were prepared using a combination of the sol-gel method, evaporation-induced self-assembly process in the presence of nonionic triblock copolymer, EO100PO65EO100 (F127), as template, salt leaching method, and rapid prototyping techniques. F127 acts as a template, inducing the formation of mesopores, NaCl with sizes between 25 and 33 μm provides macro-pores after leaching, and rapid prototyping produces giant-pores. The structure and morphology of the scaffolds were characterized by the field emission scanning electron microscopy, transmission electron microscopy, and Hg porosimetry. The mechanical properties of the scaffolds were examined by the dynamic mechanical analysis. Their in vitro bioactivities were confirmed by immersing the scaffolds in simulated body fluid. Their biocompatibilities were also evaluated by culturing human bone marrow stromal cells on the scaffolds. The scaffolds show good molding capabilities, mechanical properties, 3 dimensionally well-interconnected pore structures, bioactivities, and biocompatibilities in vitro. Depending on the amount of NaCl, the scaffolds also show unique sponge-like properties, but still retain better mechanical properties than general salt leaching derived PCL scaffolds. All of the data provide good evidence that the obtained scaffolds possess excellent potential for applications in the fields of tissue engineering and drug storage.
AB - Hierarchically mesoporous-macroporous-giant-porous bioactive glass/poly ε-caprolactone (PCL) composite scaffolds were prepared using a combination of the sol-gel method, evaporation-induced self-assembly process in the presence of nonionic triblock copolymer, EO100PO65EO100 (F127), as template, salt leaching method, and rapid prototyping techniques. F127 acts as a template, inducing the formation of mesopores, NaCl with sizes between 25 and 33 μm provides macro-pores after leaching, and rapid prototyping produces giant-pores. The structure and morphology of the scaffolds were characterized by the field emission scanning electron microscopy, transmission electron microscopy, and Hg porosimetry. The mechanical properties of the scaffolds were examined by the dynamic mechanical analysis. Their in vitro bioactivities were confirmed by immersing the scaffolds in simulated body fluid. Their biocompatibilities were also evaluated by culturing human bone marrow stromal cells on the scaffolds. The scaffolds show good molding capabilities, mechanical properties, 3 dimensionally well-interconnected pore structures, bioactivities, and biocompatibilities in vitro. Depending on the amount of NaCl, the scaffolds also show unique sponge-like properties, but still retain better mechanical properties than general salt leaching derived PCL scaffolds. All of the data provide good evidence that the obtained scaffolds possess excellent potential for applications in the fields of tissue engineering and drug storage.
KW - Bioactive glass
KW - Meso-macro-giant-porous structure
KW - Poly (ε-caprolactone)
KW - Scaffolds
UR - http://www.scopus.com/inward/record.url?scp=78650683876&partnerID=8YFLogxK
U2 - 10.1016/j.msec.2010.08.020
DO - 10.1016/j.msec.2010.08.020
M3 - Article
AN - SCOPUS:78650683876
SN - 0928-4931
VL - 31
SP - 198
EP - 205
JO - Materials Science and Engineering C
JF - Materials Science and Engineering C
IS - 2
ER -