Abstract
This study offers a promising energy conversion platform to valorize food waste into biodiesel. In an effort to realize this grand challenge, black soldier fly larvae (BSFL), fast food waste consumer, were directly converted into biodiesel through non-catalytic transesterification. Black soldier fly (BSF: Hermetia illucens) is a widely distributed insect, which turns nutrients in food waste into its fat body (lipid) through the simple metabolic mechanisms in the larval stage. Thus, lipid in BSFL grown on food waste was obtained by liquid/liquid extraction, and the extract was converted into biodiesel (93.8 wt% yield) at 65 °C for 8 h by base-catalyzed transesterification. However, non-catalytic transesterification of the extract of BSFL showed 94.1 wt% of biodiesel yield after 1 min of reaction at 390 °C in the presence of a porous material (SiO2). This non-catalytic reaction was also employed for direct conversion of dried BSFL into biodiesel without lipid extraction. In the later part of this study, fuel properties of the BSFL derived biodiesel were measured to evaluate its fuel feasibility. Physical and chemical properties of the biodiesel measured in this study met the Korea and EU biodiesel fuel standards.
Original language | English |
---|---|
Article number | 121700 |
Journal | Energy |
Volume | 238 |
DOIs | |
State | Published - 1 Jan 2022 |
Keywords
- Biodiesel
- Biofuel
- Biomass valorization
- Fatty acid methyl esters (FAMEs)
- Waste-to-energy