BranchLabelNet: Anatomical Human Airway Labeling Approach using a Dividing-and-Grouping Multi-Label Classification

Ngan Khanh Chau, Truong Thanh Ma, Woo Jin Kim, Chang Hyun Lee, Gong Yong Jin, Kum Ju Chae, Sanghun Choi

Research output: Contribution to journalArticlepeer-review

Abstract

Anatomical airway labeling is crucial for precisely identifying airways displaying symptoms such as constriction, increased wall thickness, and modified branching patterns, facilitating the diagnosis and treatment of pulmonary ailments. This study introduces an innovative airway labeling methodology, BranchLabelNet, which accounts for the fractal nature of airways and inherent hierarchical branch nomenclature. In developing this methodology, branch-related parameters, including position vectors, generation levels, branch lengths, areas, perimeters, and more, are extracted from a dataset of 1000 chest computed tomography (CT) images. To effectively manage this intricate branch data, we employ an n-ary tree structure that captures the complicated relationships within the airway tree. Subsequently, we employ a divide-and-group deep learning approach for multi-label classification, streamlining the anatomical airway branch labeling process. Additionally, we address the challenge of class imbalance in the dataset by incorporating the Tomek Links algorithm to maintain model reliability and accuracy. Our proposed airway labeling method provides robust branch designations and achieves an impressive average classification accuracy of 95.94% across fivefold cross-validation. This approach is adaptable for addressing similar complexities in general multi-label classification problems within biomedical systems. Graphical Abstract: (Figure presented.)

Original languageEnglish
Pages (from-to)3107-3122
Number of pages16
JournalMedical and Biological Engineering and Computing
Volume62
Issue number10
DOIs
StatePublished - Oct 2024

Keywords

  • Airway branch labeling
  • Divide-and-group approach
  • Multi-label classification
  • n-ary tree structure

Fingerprint

Dive into the research topics of 'BranchLabelNet: Anatomical Human Airway Labeling Approach using a Dividing-and-Grouping Multi-Label Classification'. Together they form a unique fingerprint.

Cite this