TY - JOUR
T1 - Broadband 1.53 μm Emission and McCumber Analysis of Er3+ Doped Alkali Oxyfluorophosphate Glass for Fiber Optic Communication Material
AU - Meejitpaisan, P.
AU - Kim, H. J.
AU - Kaewkhao, J.
N1 - Publisher Copyright:
© 2023 Taylor & Francis Group, LLC.
PY - 2023
Y1 - 2023
N2 - Er3+ doped alkali oxyfluorophosphate glasses were prepared by the melted quenching method and characterized their optical and photoluminescence properties. Firstly, the chemical compositions of glasses were varied by changing alkali fluoride (LiF and NaF), whereas the concentration of Er3+ was fixed at 1.00 mol%. The optical absorption pattern and intensity were resemblance. Broadband 1.53 μm emission was one prominent peak of Er3+ in glass and the highest emission intensity was obtained for NaF glass under the stimulating at 521 nm. Secondly, the NaF glass was prepared by variation of Er3+ concentration (0.1, 0.5, 1.0, 2.0, and 4.0 mol%). The emission intensity of glasses increases with an increase in Er2O3 concentration up to 2.00 mol% and decreases for higher Er2O3 concentration, because of the concentration quenching effect. Broadband emission was observed that it covers three telecommunication windows: S, C, and L bands. The absorption and emission cross-section of 2.00 mol% of Er3+ doped alkali oxyfluorophosphate were found to be 1.3895 x 10−20 cm2 and 1.7248 x 1020 cm−2, respectively by using the McCumber theory. Both values led to the estimate of the internal gain coefficient for 4I13/2→4I15/2 emission transition. The gain coefficient is positive when P is higher than 40%. All results point out that Er3+ doped alkali oxyfluorophosphate glass could be useful for fiber optic communication material.
AB - Er3+ doped alkali oxyfluorophosphate glasses were prepared by the melted quenching method and characterized their optical and photoluminescence properties. Firstly, the chemical compositions of glasses were varied by changing alkali fluoride (LiF and NaF), whereas the concentration of Er3+ was fixed at 1.00 mol%. The optical absorption pattern and intensity were resemblance. Broadband 1.53 μm emission was one prominent peak of Er3+ in glass and the highest emission intensity was obtained for NaF glass under the stimulating at 521 nm. Secondly, the NaF glass was prepared by variation of Er3+ concentration (0.1, 0.5, 1.0, 2.0, and 4.0 mol%). The emission intensity of glasses increases with an increase in Er2O3 concentration up to 2.00 mol% and decreases for higher Er2O3 concentration, because of the concentration quenching effect. Broadband emission was observed that it covers three telecommunication windows: S, C, and L bands. The absorption and emission cross-section of 2.00 mol% of Er3+ doped alkali oxyfluorophosphate were found to be 1.3895 x 10−20 cm2 and 1.7248 x 1020 cm−2, respectively by using the McCumber theory. Both values led to the estimate of the internal gain coefficient for 4I13/2→4I15/2 emission transition. The gain coefficient is positive when P is higher than 40%. All results point out that Er3+ doped alkali oxyfluorophosphate glass could be useful for fiber optic communication material.
KW - Alkali oxyfluorophosphate glass
KW - Erbium
KW - fiber optic communication material
KW - McCumber theory
UR - http://www.scopus.com/inward/record.url?scp=85174863352&partnerID=8YFLogxK
U2 - 10.1080/10584587.2023.2234614
DO - 10.1080/10584587.2023.2234614
M3 - Article
AN - SCOPUS:85174863352
SN - 1058-4587
VL - 239
SP - 104
EP - 119
JO - Integrated Ferroelectrics
JF - Integrated Ferroelectrics
IS - 1
ER -