TY - CHAP
T1 - Cadmium free quantum dots
T2 - Principal attractions, properties, and applications
AU - Mnoyan, Anush
AU - Lee, Yonghee
AU - Jung, Hankyeol
AU - Kim, Somang
AU - Jeon, Duk Young
N1 - Publisher Copyright:
© Springer Science+Business Media Singapore 2016.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - For the past thirty years, interest on semiconductor nanocrystals from versatile systems of II–VI Quantum Dots (QDs) has been actively grown depending upon their application to light-emitting diodes (Gaponik in Mater Chem 10: 2163–2166, 2000 [1]), lasers (Artemyev et al. in Nano Lett 1:309–314, 2001 [2]), and biomedical research (Bruchez et al. in Science 281:2013–2016, 1998 [3]; Chan and Nie in Science 281:2016–2018, 1998 [4]; Michalet et al. in Science 307:538– 544, 2005 [5]). However, the presence of highly toxic cadmium limits the application range particularly in the lighting and biological fields. To lessen the toxicity issue, various approaches were developed, such as overcoating the toxic core by non-toxic ZnS shell preventing the leakage of cadmium ions (Chou and Chan in Nat Nanotechnol 7(7):416–417, 2012 [6]; Ghaderi et al. in J Drug Targeting 19:475– 486, 2011 [7]; Winnik and Maysinger in Acc Chem Res 46:672–680, 2012 [8]). Despite this action, II–VI QDs still remain unsafe due to initiated response to UV irradiation- or oxidation-resulted cadmium release through oxidized surface sites (Derfus et al. in Nano Lett 4:11–18, 2004 [9]). Therefore, the research focus was shifted to so-called cadmium free QDs, such as ZnSe, InP, and CuInS2.
AB - For the past thirty years, interest on semiconductor nanocrystals from versatile systems of II–VI Quantum Dots (QDs) has been actively grown depending upon their application to light-emitting diodes (Gaponik in Mater Chem 10: 2163–2166, 2000 [1]), lasers (Artemyev et al. in Nano Lett 1:309–314, 2001 [2]), and biomedical research (Bruchez et al. in Science 281:2013–2016, 1998 [3]; Chan and Nie in Science 281:2016–2018, 1998 [4]; Michalet et al. in Science 307:538– 544, 2005 [5]). However, the presence of highly toxic cadmium limits the application range particularly in the lighting and biological fields. To lessen the toxicity issue, various approaches were developed, such as overcoating the toxic core by non-toxic ZnS shell preventing the leakage of cadmium ions (Chou and Chan in Nat Nanotechnol 7(7):416–417, 2012 [6]; Ghaderi et al. in J Drug Targeting 19:475– 486, 2011 [7]; Winnik and Maysinger in Acc Chem Res 46:672–680, 2012 [8]). Despite this action, II–VI QDs still remain unsafe due to initiated response to UV irradiation- or oxidation-resulted cadmium release through oxidized surface sites (Derfus et al. in Nano Lett 4:11–18, 2004 [9]). Therefore, the research focus was shifted to so-called cadmium free QDs, such as ZnSe, InP, and CuInS2.
UR - http://www.scopus.com/inward/record.url?scp=85006821410&partnerID=8YFLogxK
U2 - 10.1007/978-981-10-1590-8_15
DO - 10.1007/978-981-10-1590-8_15
M3 - Chapter
AN - SCOPUS:85006821410
SN - 9789811015892
VL - 2
SP - 437
EP - 471
BT - Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications
PB - Springer Singapore
ER -