Abstract
The synthesis of dimeric products from monoterpene hydrocarbons has been studied for the development of renewable high-density fuel. In this regard, the conversion of α-pinene in turpentine over stannic chloride molten salt hydrates (SnCl4·5H2O) as a catalyst was investigated, and the reaction products were analyzed with gas chromatography/flame ionization detector/mass spectrometer (GC/FID/MS). Overall, the content of α-pinene in a reaction mixture decreased precipitously with an increasing reaction temperature. Almost 100% of the conversion was shown after 1 h of reaction above 90◦C. From α-pinene, dimeric products (hydrocarbons and alcohols/ethers) were mostly formed and their yield showed a steady increase of up to 61 wt% based on the reaction mixture along with the reaction temperature. This conversion was thought to be promoted by Brønsted acid activity of the catalyst, which resulted from a Lewis acid-base interaction between the stannic (Sn(IV)) center and the coordinated water ligands. As for the unexpected heteroatom-containing products, oxygen and chlorine atoms were originated from the coordinated water and chloride ligands of the catalyst. Based on the results, we constructed not only a plausible catalytic cycle of SnCl4·5H2O but also the mechanism of catalyst decomposition.
Original language | English |
---|---|
Article number | 7517 |
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Applied Sciences (Switzerland) |
Volume | 10 |
Issue number | 21 |
DOIs | |
State | Published - 1 Nov 2020 |
Keywords
- High-density fuel
- Renewable fuel
- Stannic chloride molten salt hydrates
- Turpentine
- α-pinene dimerization